
Andrea Porras-Alfaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6727937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Research, 2014, 42, D633-D642.	6.5	3,768
2	Hidden Fungi, Emergent Properties: Endophytes and Microbiomes. Annual Review of Phytopathology, 2011, 49, 291-315.	3.5	753
3	Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology, 2008, 96, 413-420.	1.9	330
4	Novel Root Fungal Consortium Associated with a Dominant Desert Grass. Applied and Environmental Microbiology, 2008, 74, 2805-2813.	1.4	189
5	Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia, 2016, 108, 1-5.	0.8	178
6	Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes. Applied and Environmental Microbiology, 2012, 78, 1523-1533.	1.4	160
7	Sequence-based classification and identification of Fungi. Mycologia, 2016, 108, 1049-1068.	0.8	154
8	Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia, 2011, 103, 10-21.	0.8	153
9	Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. Journal of Ecology, 2008, 96, 1076-1085.	1.9	134
10	Photoacceleration of plant litter decomposition in an arid environment. Soil Biology and Biochemistry, 2009, 41, 1433-1441.	4.2	127
11	A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland. Journal of Arid Environments, 2010, 74, 35-42.	1.2	103
12	Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant and Soil, 2007, 296, 65-75.	1.8	101
13	Mycorrhizal fungi of <i>Vanilla</i> : diversity, specificity and effects on seed germination and plant growth. Mycologia, 2007, 99, 510-525.	0.8	99
14	Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics, 2019, 20, 976.	1.2	96
15	Shifting fungal endophyte communities colonize <i>Bouteloua gracilis</i> : effect of host tissue and geographical distribution. Mycologia, 2010, 102, 1012-1026.	0.8	90
16	From Genus to Phylum: Large-Subunit and Internal Transcribed Spacer rRNA Operon Regions Show Similar Classification Accuracies Influenced by Database Composition. Applied and Environmental Microbiology, 2014, 80, 829-840.	1.4	88
17	Nitrogen deposition alters plant–fungal relationships: linking belowground dynamics to aboveground vegetation change. Molecular Ecology, 2014, 23, 1364-1378.	2.0	65
18	Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth. Mycologia, 2007, 99, 510-525.	0.8	51

#	Article	IF	CITATIONS
19	Psychrophilic and Psychrotolerant Fungi on Bats and the Presence of Geomyces spp. on Bat Wings Prior to the Arrival of White Nose Syndrome. Applied and Environmental Microbiology, 2013, 79, 5465-5471.	1.4	40
20	Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity. Applied and Environmental Microbiology, 2017, 83, .	1.4	35
21	Meeting Report: Fungal ITS Workshop (October 2012). Standards in Genomic Sciences, 2013, 8, 118-123.	1.5	34
22	Biogeography of Root-Associated Fungal Endophytes. Ecological Studies, 2017, , 195-222.	0.4	30
23	Fungal Communities Associated with Rock Varnish in Black Canyon, New Mexico: Casual Inhabitants or Essential Partners?. Geomicrobiology Journal, 2012, 29, 752-766.	1.0	29
24	<i>Bifiguratus adelaidae</i> , gen. et sp. nov., a new member of Mucoromycotina in endophytic and soil-dwelling habitats. Mycologia, 2017, 109, 363-378.	0.8	27
25	Endophytic fungal symbionts associated with gypsophilous plants. Botany, 2014, 92, 295-301.	0.5	26
26	Presence and distribution of heavy metal tolerant fungi in surface soils of a temperate pine forest. Applied Soil Ecology, 2018, 131, 66-74.	2.1	26
27	Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat, geography and bat traits. PeerJ, 2017, 5, e3944.	0.9	25
28	Assembly of rootâ€associated bacteria communities: interactions between abiotic and biotic factors. Environmental Microbiology Reports, 2015, 7, 102-110.	1.0	20
29	Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors. Marine Biotechnology, 2015, 17, 533-564.	1.1	19
30	Seed-associated fungi in the alpine tundra: Both mutualists and pathogens could impact plant recruitment. Fungal Ecology, 2017, 30, 10-18.	0.7	18
31	Microscopic characterization of orchid mycorrhizal fungi: Scleroderma as a putative novel orchid mycorrhizal fungus of Vanilla in different crop systems. Mycorrhiza, 2018, 28, 147-157.	1.3	17
32	Experimental drought reâ€ordered assemblages of rootâ€associated fungi across North American grasslands. Journal of Ecology, 2021, 109, 776-792.	1.9	17
33	Biogeography of rootâ€associated fungi in foundation grasses of North American plains. Journal of Biogeography, 2022, 49, 22-37.	1.4	17
34	Soil Fungal Cellobiohydrolase I Gene (<i>cbhI</i>) Composition and Expression in a Loblolly Pine Plantation under Conditions of Elevated Atmospheric CO ₂ and Nitrogen Fertilization. Applied and Environmental Microbiology, 2012, 78, 3950-3957.	1.4	14
35	Root-associated fungal community response to drought-associated changes in vegetation community. Mycologia, 2015, 107, 1089-1104.	0.8	12
36	Keratinophilic fungi: Specialized fungal communities in a desert ecosystem identified using cultured-based and Illumina sequencing approaches. Microbiological Research, 2020, 239, 126530.	2.5	12

#	Article	IF	CITATIONS
37	Diversity of thermophilic and thermotolerant fungi in corn grain. Mycologia, 2019, 111, 719-729.	0.8	11
38	<i>Vanilla</i> aerial and terrestrial roots host rich communities of orchid mycorrhizal and ectomycorrhizal fungi. Plants People Planet, 2021, 3, 541-552.	1.6	8
39	A study of Clycine max (soybean) fungal communities under different agricultural practices. Plant Gene, 2017, 11, 8-16.	1.4	7
40	6. Fungal Diversity, Community Structure and Their Functional Roles in Desert Soils. , 2017, , 97-122.		7
41	Streptomyces buecherae sp. nov., an actinomycete isolated from multiple bat species. Antonie Van Leeuwenhoek, 2020, 113, 2213-2221.	0.7	6
42	Seasonal variation and potential roles of dark septate fungi in an arid grassland. Mycologia, 2021, 113, 1-18.	0.8	6
43	<i>Darksidea phi</i> , sp. nov., a dark septate root-associated fungus in foundation grasses in North American Great Plains. Mycologia, 2022, 114, 254-269.	0.8	6
44	Ribosomal RNA gene detection and targeted culture of novel nitrogen-responsive fungal taxa from temperate pine forest soil. Mycologia, 2016, 108, 1082-1090.	0.8	5
45	Presence and distribution of insect-associated and entomopathogenic fungi in a temperate pine forest soil: An integrated approach. Fungal Biology, 2019, 123, 864-874.	1.1	3
46	Streptomyces corynorhini sp. nov., isolated from Townsend's big-eared bats (Corynorhinus) Tj ETQq0 0 0 rgBT	Oyerlocl 0.7	د 10 Tf 50 38

47 Improving Instructional Fitness Requires Change. BioScience, 2020, 70, 1027-1035.

2.2 1