Sanjit Saha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6727624/publications.pdf

Version: 2024-02-01

430442 580395 1,157 27 18 25 h-index citations g-index papers 31 31 31 1569 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	One-step hydrothermal synthesis of porous Ti ₃ C ₂ T _{<i>z</i>} MXene/rGO gels for supercapacitor applications. Nanoscale, 2021, 13, 16543-16553.	2.8	36
2	Mechanical and Barrier Properties of Bromo–Butyl Elastomers Filled with Electrochemically Exfoliated Graphene. Macromolecular Materials and Engineering, 2021, 306, 2100153.	1.7	0
3	Sustainable production of graphene from petroleum coke using electrochemical exfoliation. Npj 2D Materials and Applications, 2021, 5, .	3.9	6
4	Graphene signatures: Identifying graphite and graphene grades via radio frequency heating. Carbon, 2021, 182, 564-570.	5 . 4	5
5	Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. IScience, 2021, 24, 103403.	1.9	60
6	Scalable Production of Graphene Nanoplatelets for Energy Storage. ACS Applied Nano Materials, 2020, 3, 10303-10309.	2.4	11
7	Optimization of Chemiâ€adsorption, EDLC, and Redox Capacitance Through Electroâ€precipitation Synthesis of Fe 3 O 4 /NiO@rGO/hâ€BN for the Development of Hybrid Supercapacitor. ChemistrySelect, 2019, 4, 589-599.	0.7	5
8	Modified electrochemical charge storage properties of h-BN/rGO superlattice through the transition from n to p type semiconductor by fluorine doping. Chemical Engineering Journal, 2018, 339, 334-345.	6.6	27
9	Controlled electrodeposition of iron oxide/nickel oxide@Ni for the investigation of the effects of stoichiometry and particle size on energy storage and water splitting applications. Journal of Materials Chemistry A, 2018, 6, 9657-9664.	5 . 2	19
10	A review on the heterostructure nanomaterials for supercapacitor application. Journal of Energy Storage, 2018, 17, 181-202.	3.9	129
11	Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Materials Chemistry and Physics, 2017, 190, 153-165.	2.0	47
12	Electrochemical functionalization and in-situ deposition of the SAA@rGO/h-BN@Ni electrode for supercapacitor applications. Journal of Industrial and Engineering Chemistry, 2017, 52, 321-330.	2.9	21
13	A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO 2 -reduced graphene oxide assembly for supercapacitor application. Journal of Power Sources, 2017, 340, 380-392.	4.0	51
14	Investigation of the surface plasmon polariton and electrochemical properties of covalent and non-covalent functionalized reduced graphene oxide. Physical Chemistry Chemical Physics, 2017, 19, 28588-28595.	1.3	19
15	Efficient Access of Voltammetric Charge in Hybrid Supercapacitor Configured with Potassium Incorporated Nanographitic Structure Derived from Cotton (<i>Gossypium arboreum</i>) as Negative and Ni(OH) ₂ /rGO Composite as Positive Electrode. Industrial & Designee in Gostove Chemistry Research. 2016. 55, 11074-11084.	1.8	16
16	Band gap modified boron doped NiO/Fe ₃ O ₄ nanostructure as the positive electrode for high energy asymmetric supercapacitors. RSC Advances, 2016, 6, 1380-1387.	1.7	56
17	In-situ hydrothermal synthesis of MnO2/NiO@Ni hetero structure electrode for hydrogen evolution reaction and high energy asymmetric supercapacitor applications. Journal of Energy Storage, 2016, 6, 22-31.	3.9	59
18	Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes. Journal of Materials Chemistry A, 2016, 4, 2188-2197.	5.2	97

SANJIT SAHA

#	Article	lF	CITATIONS
19	Self Charging Sulfanilic Acid Azocromotrop/Reduced Graphene Oxide Decorated Nickel Oxide/Iron Oxide Solar Supercapacitor for Energy Storage Application. Composites Research, 2016, 29, 179-185.	0.1	0
20	Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. Journal of Materials Chemistry A, 2015, 3, 7323-7331.	5.2	125
21	Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14211-14222.	4.0	131
22	Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites. Nanotechnology, 2015, 26, 075402.	1.3	37
23	In situ preparation of a SAC-RGO@Ni electrode by electrochemical functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application in asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 19461-19468.	5.2	22
24	Investigation of the capacitive performance of tobacco solution reduced graphene oxide. Materials Chemistry and Physics, 2015, 151, 72-80.	2.0	16
25	Hydrothermal synthesis of Fe ₃ O ₄ /RGO composites and investigation of electrochemical performances for energy storage applications. RSC Advances, 2014, 4, 44777-44785.	1.7	54
26	Bio-reduction of graphene oxide using drained water from soaked mung beans (Phaseolus aureus L.) and its application as energy storage electrode material. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 186, 33-40.	1.7	101
27	Water-Dispersible Ti ₃ C ₂ T _z MXene Nanosheets by Acid-Free, Molten Salt Etching. SSRN Electronic Journal, 0, , .	0.4	1