Lee E Frelich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6727384/publications.pdf Version: 2024-02-01

LEE F EDELICH

#	Article	IF	CITATIONS
1	Ural Mountains Taiga. , 2022, , 318-328.		1
2	Wind and fire: Rapid shifts in tree community composition following multiple disturbances in the southern boreal forest. Ecosphere, 2022, 13, .	2.2	5
3	Revegetation to slow buckthorn reinvasion: strengths and limits of evaluating management techniques retrospectively. Restoration Ecology, 2021, 29, .	2.9	5
4	The Possibility of Using the Chapman–Richards and Näund Functions to Model Height–Diameter Relationships in Hemiboreal Old-Growth Forest in Estonia. Forests, 2021, 12, 184.	2.1	3
5	Earthworm invasion causes declines across soil fauna size classes and biodiversity facets in northern North American forests. Oikos, 2021, 130, 766-780.	2.7	21
6	Seven Ways a Warming Climate Can Kill the Southern Boreal Forest. Forests, 2021, 12, 560.	2.1	19
7	History and Future of Fire in Hardwood and Conifer Forests of the Great Lakes-Northeastern Forest Region, USA. Managing Forest Ecosystems, 2021, , 243-285.	0.9	2
8	White-tailed deer herbivory impacts on tree seedling and sapling abundance in the Lake States Region of the USA. Annals of Forest Science, 2021, 78, 1.	2.0	6
9	Boreal and Taiga Biome. , 2020, , 103-115.		3
10	Climate-Biome Envelope Shifts Create Enormous Challenges and Novel Opportunities for Conservation. Forests, 2020, 11, 1015.	2.1	12
11	Are Secondary Forests Ready for Climate Change? It Depends on Magnitude of Climate Change, Landscape Diversity and Ecosystem Legacies. Forests, 2020, 11, 965.	2.1	14
12	Climateâ€change refugia in boreal North America: what, where, and for how long?. Frontiers in Ecology and the Environment, 2020, 18, 261-270.	4.0	91
13	Natural Disturbance Dynamics Analysis for Ecosystem-Based Management—FORDISMAN. Forests, 2020, 11, 663.	2.1	Ο
14	Monitoring disturbance intervals in forests: a case study of increasing forest disturbance in Minnesota. Annals of Forest Science, 2019, 76, 1.	2.0	12
15	Sideâ€swiped: ecological cascades emanating from earthworm invasions. Frontiers in Ecology and the Environment, 2019, 17, 502-510.	4.0	60
16	Terrestrial Ecosystem Impacts of Sulfide Mining: Scope of Issues for the Boundary Waters Canoe Area Wilderness, Minnesota, USA. Forests, 2019, 10, 747.	2.1	10
17	Promoting and maintaining diversity in contemporary hardwood forests: Confronting contemporary drivers of change and the loss of ecological memory. Forest Ecology and Management, 2018, 421, 98-108.	3.2	83
18	Natural Disturbances and Forest Management: Interacting Patterns on the Landscape. , 2018, , 221-248.		8

2

#	Article	IF	CITATIONS
19	How much does climate change threaten European forest tree species distributions?. Global Change Biology, 2018, 24, 1150-1163.	9.5	540
20	Imprints of management history on hemiboreal forest ecosystems in the Baltic States. Ecosphere, 2018, 9, e02503.	2.2	20
21	Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 2018, 9, 4355.	12.8	167
22	Quantifying impacts of white-tailed deer (Odocoileus virginianus Zimmerman) browse using forest inventory and socio-environmental datasets. PLoS ONE, 2018, 13, e0201334.	2.5	14
23	Interspecific competition limits the realized niche of <i>Fraxinus nigra</i> along a waterlogging gradient. Canadian Journal of Forest Research, 2018, 48, 1292-1301.	1.7	7
24	Wildland Fire: Understanding and Maintaining an Ecological Baseline. Current Forestry Reports, 2017, 3, 188-201.	7.4	6
25	The changing role of fire in mediating the relationships among oaks, grasslands, mesic temperate forests, and boreal forests in the Lake States. Journal of Sustainable Forestry, 2017, 36, 421-432.	1.4	17
26	Hemiboreal forest: natural disturbances and the importance of ecosystem legacies to management. Ecosphere, 2017, 8, e01706.	2.2	74
27	The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a metaâ€analysis). Global Change Biology, 2017, 23, 1065-1074.	9.5	107
28	Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 2016, 14, 369-378.	4.0	947
29	Temperature and leaf nitrogen affect performance of plant species at range overlap. Ecosphere, 2015, 6, art186.	2.2	7
30	Invasive earthworms interact with abiotic conditions to influence the invasion of common buckthorn (Rhamnus cathartica). Oecologia, 2015, 178, 219-230.	2.0	33
31	Impact of wind-induced microsites and disturbance severity on tree regeneration patterns: Results from the first post-storm decade. Forest Ecology and Management, 2015, 348, 174-185.	3.2	25
32	How to Become a Forest Ecologist In Only 40 Years. Bulletin of the Ecological Society of America, 2014, 95, 207-210.	0.2	0
33	Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. Ecography, 2014, 37, 152-161.	4.5	118
34	Resident plant diversity and introduced earthworms have contrasting effects on the success of invasive plants. Biological Invasions, 2014, 16, 2181-2193.	2.4	17
35	Earthworm invasion alters enchytraeid community composition and individual biomass in northern hardwood forests of North America. Applied Soil Ecology, 2014, 83, 159-169.	4.3	23
36	Climate and interrelated tree regeneration drivers in mixed temperate–boreal forests. Landscape Ecology, 2013, 28, 149-159.	4.2	49

Lee E Frelich

#	Article	IF	CITATIONS
37	Earthworm Invasions in Northern Hardwood Forests: a Rapid Assessment Method. Natural Areas Journal, 2013, 33, 21-30.	0.5	22
38	Linking direct and indirect pathways mediating earthworms, deer, and understory composition in Great Lakes forests. Biological Invasions, 2013, 15, 1057-1066.	2.4	65
39	Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairie–forest biome boundary of historic <scp>M</scp> innesota, <scp>USA</scp> . Journal of Vegetation Science, 2013, 24, 1129-1140.	2.2	33
40	Sapling growth responses to warmer temperatures â€~cooled' by browse pressure. Global Change Biology, 2012, 18, 3455-3463.	9.5	72
41	Leaf Litter Disappearance in Earthworm-Invaded Northern Hardwood Forests: Role of Tree Species and the Chemistry and Diversity of Litter. Ecosystems, 2012, 15, 913-926.	3.4	43
42	Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate–boreal forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2955-2961.	4.0	57
43	First records of Parergodrilus heideri (Annelida: "Polychaeta") from North America. Zootaxa, 2012, 3498, 81.	0.5	4
44	Understorey diversity in southern boreal forests is regulated by productivity and its indirect impacts on resource availability and heterogeneity. Journal of Ecology, 2012, 100, 539-545.	4.0	99
45	Interactive effects of global warming and â€~global worming' on the initial establishment of native and exotic herbaceous plant species. Oikos, 2012, 121, 1121-1133.	2.7	60
46	Poor recruitment is changing the structure and species composition of an old-growth hemlock-hardwood forest. Forest Ecology and Management, 2011, 261, 1998-2006.	3.2	42
47	Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions. Journal of Applied Ecology, 2011, 48, 659-667.	4.0	70
48	Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. Journal of Ecology, 2011, 99, 991-1000.	4.0	120
49	Vegetation controls vary across space and spatial scale in a historic grassland-forest biome boundary. Ecography, 2011, 34, 402-414.	4.5	31
50	The wave towards a new steady state: effects of earthworm invasion on soil microbial functions. Biological Invasions, 2011, 13, 2191-2196.	2.4	46
51	Fine-scale heterogeneity in overstory composition contributes to heterogeneity of wildfire severity in southern boreal forest. Journal of Forest Research, 2011, 16, 203-214.	1.4	30
52	Will environmental changes reinforce the impact of global warming on the prairie–forest border of central North America?. Frontiers in Ecology and the Environment, 2010, 8, 371-378.	4.0	153
53	Tree rings detect earthworm invasions and their effects in northern Hardwood forests. Biological Invasions, 2010, 12, 1053-1066.	2.4	50
54	European buckthorn and Asian soybean aphid as components of an extensive invasional meltdown in North America. Biological Invasions, 2010, 12, 2913-2931.	2.4	137

#	Article	IF	CITATIONS
55	Detecting wind disturbance severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution satellite imagery and field data. Remote Sensing of Environment, 2010, 114, 299-308.	11.0	32
56	Wilderness Conservation in an Era of Global Warming and Invasive Species: A Case Study from Minnesota's Boundary Waters Canoe Area Wilderness. Natural Areas Journal, 2009, 29, 385-393.	0.5	30
57	Regional climate change adaptation strategies for biodiversity conservation in a midcontinental region of North America. Biological Conservation, 2009, 142, 2012-2022.	4.1	97
58	Patterns of plant community structure within and among primary and second-growth northern hardwood forest stands. Forest Ecology and Management, 2009, 258, 2556-2568.	3.2	39
59	Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: a mesocosm study. Oecologia, 2008, 155, 509-518.	2.0	80
60	Site factors affecting black ash ring growth in northern Minnesota. Forest Ecology and Management, 2008, 255, 3489-3493.	3.2	12
61	Litter decomposition in earthworm-invaded northern hardwood forests: Role of invasion degree and litter chemistry. Ecoscience, 2008, 15, 536-544.	1.4	49
62	MOSS HARVEST TRUNCATES THE SUCCESSIONAL DEVELOPMENT OF EPIPHYTIC BRYOPHYTES IN THE PACIFIC NORTHWEST. , 2008, 18, 146-158.		9
63	Frost Crack Incidence in Northern Hardwood Forests of the Southern Boreal–North Temperate Transition Zone. Northern Journal of Applied Forestry, 2008, 25, 133-138.	0.5	10
64	REGIONAL EXTENT OF AN ECOSYSTEM ENGINEER: EARTHWORM INVASION IN NORTHERN HARDWOOD FORESTS. Ecological Applications, 2007, 17, 1666-1677.	3.8	84
65	Windâ€ŧhrow mortality in the southern boreal forest: effects of species, diameter and stand age. Journal of Ecology, 2007, 95, 1261-1273.	4.0	155
66	Effects of Earthworm Invasion on Plant Species Richness in Northern Hardwood Forests. Conservation Biology, 2007, 21, 997-1008.	4.7	100
67	CHANGES IN HARDWOOD FOREST UNDERSTORY PLANT COMMUNITIES IN RESPONSE TO EUROPEAN EARTHWORM INVASIONS. Ecology, 2006, 87, 1637-1649.	3.2	201
68	Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological Invasions, 2006, 8, 1235-1245.	2.4	250
69	Earthworm invasion into previously earthworm-free temperate and boreal forests. , 2006, , 35-45.		10
70	Effects of European Earthworm Invasion on Soil Characteristics in Northern Hardwood Forests of Minnesota, USA. Ecosystems, 2005, 8, 911-927.	3.4	206
71	PATHWAYS IN OLD-FIELD SUCCESSION TO WHITE PINE: SEED RAIN, SHADE, AND CLIMATE EFFECTS. Ecological Monographs, 2005, 75, 363-378.	5.4	110
72	EXOTIC EUROPEAN EARTHWORM INVASION DYNAMICS IN NORTHERN HARDWOOD FORESTS OF MINNESOTA, USA. , 2005, 15, 848-860.		167

#	Article	IF	CITATIONS
73	Allometric Equations for Estimation of Ash-free Dry Mass from Length Measurements for Selected European Earthworm Species (Lumbricidae) in the Western Great Lakes Region. American Midland Naturalist, 2004, 151, 179-185.	0.4	55
74	Examining the effects of alternative management strategies on landscape-scale forest patterns in northeastern Minnesota using LANDIS. Ecological Modelling, 2004, 180, 73-87.	2.5	17
75	Fine-scale environmental variation and structure of understorey plant communities in two old-growth pine forests. Journal of Ecology, 2003, 91, 283-293.	4.0	53
76	Perspectives on development of definitions and values related to old-growth forests. Environmental Reviews, 2003, 11, S9-S22.	4.5	68
77	Seed rain, safe sites, competing vegetation, and soil resources spatially structure white pine regeneration and recruitment. Canadian Journal of Forest Research, 2003, 33, 1892-1904.	1.7	72
78	Comparing the Importance of Seedbed and Canopy Type in the Restoration of Upland Thuja occidentalis Forests of Northeastern Minnesota. Restoration Ecology, 2001, 9, 386-396.	2.9	27
79	Discordance in spatial patterns of white pine (Pinus strobus) size-classes in a patchy near-boreal forest. Journal of Ecology, 2001, 89, 280-291.	4.0	70
80	Multiple scale composition and spatial distribution patterns of the north-eastern Minnesota presettlement forest. Journal of Ecology, 2001, 89, 538-554.	4.0	40
81	INFLUENCE OF LOGGING, FIRE, AND FOREST TYPE ON BIODIVERSITY AND PRODUCTIVITY IN SOUTHERN BOREAL FORESTS. Ecology, 2001, 82, 2731-2748.	3.2	177
82	Seedbed and moisture availability determine safe sites for early Thuja occidentalis (Cupressaceae) regeneration. American Journal of Botany, 2000, 87, 1807-1814.	1.7	52
83	Conservation implications of browsing by Odocoileus virginianus in remnant upland Thuja occidentalis forests. Biological Conservation, 2000, 93, 359-369.	4.1	84
84	Minireviews: Neighborhood Effects, Disturbance Severity, and Community Stability in Forests. Ecosystems, 1999, 2, 151-166.	3.4	158
85	Are Large, Infrequent Disturbances Qualitatively Different from Small, Frequent Disturbances?. Ecosystems, 1998, 1, 524-534.	3.4	168
86	Effects of White-Tailed Deer on Populations of an Understory Forb in Fragmented Deciduous Forests. Conservation Biology, 1998, 12, 995-1004.	4.7	216
87	Neighbourhood effects in forests: implications for within-stand patch structure. Journal of Ecology, 1998, 86, 149-161.	4.0	52
88	EVIDENCE FOR TWO ALTERNATE STABLE STATES IN AN UNGULATE GRAZING SYSTEM. , 1998, 8, 1260-1269.		125
89	A Structural Alternative to Chronosequence Analysis for Uneven-Aged Northern Hardwood Forests. Journal of Sustainable Forestry, 1997, 6, 347-366.	1.4	23
90	Modeling for ecosystem management in Minnesota pine forests. Biological Conservation, 1997, 80, 313-324.	4.1	32

#	Article	IF	CITATIONS
91	Neighborhood effects, disturbance, and succession in forests of the western Great Lakes Region1. Ecoscience, 1995, 2, 148-158.	1.4	53
92	Spatial Patterns and Succession in a Minnesota Southernâ€Boreal Forest. Ecological Monographs, 1995, 65, 325-346.	5.4	321
93	Age-class distribution and spatial patterns in an old-growth hemlock–hardwood forest. Canadian Journal of Forest Research, 1994, 24, 1939-1947.	1.7	92
94	Patch Formation and Maintenance in an Old-Growth Hemlock-Hardwood Forest. Ecology, 1993, 74, 513-527.	3.2	184
95	A Simulation of Landscape-Level Stand Dynamics in the Northern Hardwood Region. Journal of Ecology, 1991, 79, 223.	4.0	60
96	Natural Disturbance Regimes in Hemlockâ€Hardwood Forests of the Upper Great Lakes Region. Ecological Monographs, 1991, 61, 145-164.	5.4	383
97	A methodology for estimating canopy disturbance frequency and intensity in dense temperate forests. Canadian Journal of Forest Research, 1989, 19, 651-663.	1.7	378
98	Estimating Gap Origin Probabilities for Canopy Trees. Ecology, 1988, 69, 778-785.	3.2	68
99	Current and predicted long-term effects of deer browsing in hemlock forests in Michigan, USA. Biological Conservation, 1985, 34, 99-120.	4.1	205
100	A Simulation of Equilibrium Diameter Distributions of Sugar Maple (Acer saccharum). Bulletin of the Torrey Botanical Club, 1984, 111, 193.	0.6	73