Nina Deisig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6727077/publications.pdf Version: 2024-02-01

NINA DEISIC

#	Article	IF	CITATIONS
1	Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. Insects, 2021, 12, 409.	1.0	3
2	Modulatory effects of pheromone on olfactory learning and memory in moths. Journal of Insect Physiology, 2020, 127, 104159.	0.9	6
3	Responsiveness to Sugar Solutions in the Moth Agrotis ipsilon: Parameters Affecting Proboscis Extension. Frontiers in Physiology, 2019, 10, 1423.	1.3	13
4	Exposure to Conspecific and Heterospecific Sex-Pheromones Modulates Gustatory Habituation in the Moth Agrotis ipsilon. Frontiers in Physiology, 2019, 10, 1518.	1.3	12
5	Cockroaches Show Individuality in Learning and Memory During Classical and Operant Conditioning. Frontiers in Physiology, 2019, 10, 1539.	1.3	15
6	Seasonality, alarm pheromone and serotonin: insights on the neurobiology of honeybee defence from winter bees. Biology Letters, 2018, 14, 20180337.	1.0	4
7	Decoding ants' olfactory system sheds light on the evolution of social communication. Proceedings of the United States of America, 2017, 114, 8911-8913.	3.3	20
8	A Background of a Volatile Plant Compound Alters Neural and Behavioral Responses to the Sex Pheromone Blend in a Moth. Frontiers in Physiology, 2017, 8, 79.	1.3	17
9	Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152987.	1.2	18
10	Unexpected plant odor responses in a moth pheromone system. Frontiers in Physiology, 2015, 6, 148.	1.3	30
11	Heterogeneity and Convergence of Olfactory First-Order Neurons Account for the High Speed and Sensitivity of Second-Order Neurons. PLoS Computational Biology, 2014, 10, e1003975.	1.5	28
12	Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior. Insects, 2014, 5, 399-422.	1.0	40
13	Differential Interactions of Sex Pheromone and Plant Odour in the Olfactory Pathway of a Male Moth. PLoS ONE, 2012, 7, e33159.	1.1	64
14	Visual Cognition in Social Insects. Annual Review of Entomology, 2011, 56, 423-443.	5.7	156
15	Mating-induced differential coding of plant odour and sex pheromone in a male moth. European Journal of Neuroscience, 2011, 33, 1841-1850.	1.2	55
16	The RNA-binding protein Xp54nrb isolated from a Ca ²⁺ -dependent screen is expressed in neural structures during Xenopus laevis development. International Journal of Developmental Biology, 2011, 55, 923-931.	0.3	10
17	Antennal Lobe Processing Increases Separability of Odor Mixture Representations in the Honeybee. Journal of Neurophysiology, 2010, 103, 2185-2194.	0.9	95

18 Neurobiology of olfactory communication in the honeybee. , 2008, , 119-138.

2

NINA DEISIG

#	Article	IF	CITATION
19	Understanding the logics of pheromone processing in the honeybee brain: from labeled-lines to across-fiber patterns. Frontiers in Behavioral Neuroscience, 2007, 1, 5.	1.0	55
20	The trial-spacing effect in olfactory patterning discriminations in honeybees. Behavioural Brain Research, 2007, 176, 314-322.	1.2	62
21	Neural representation of olfactory mixtures in the honeybee antennal lobe. European Journal of Neuroscience, 2006, 24, 1161-1174.	1.2	137
22	A Modified Version of the Unique Cue Theory Accounts for Olfactory Compound Processing in Honeybees. Learning and Memory, 2003, 10, 199-208.	0.5	72
23	The Effect of Similarity between Elemental Stimuli and Compounds in Olfactory Patterning Discriminations. Learning and Memory, 2002, 9, 112-121.	0.5	73
24	Configural Olfactory Learning in Honeybees: Negative and Positive Patterning Discrimination. Learning and Memory, 2001, 8, 70-78.	0.5	99
25	Configural Olfactory Learning in Honeybees: Negative and Positive Patterning Discrimination. Learning and Memory, 2001, 8, 70-78,	0.5	22