Cecilia Berin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6727023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mucus Enhances Gut Homeostasis and Oral Tolerance by Delivering Immunoregulatory Signals. Science, 2013, 342, 447-453.	6.0	508
2	International consensus guidelines for the diagnosis and management of food protein–induced enterocolitis syndrome: Executive summary—Workgroup Report of the Adverse Reactions to Foods Committee, American Academy of Allergy, Asthma & Immunology. Journal of Allergy and Clinical Immunology, 2017, 139, 1111-1126.e4.	1.5	464
3	Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science, 2019, 365, .	6.0	304
4	Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. Journal of Allergy and Clinical Immunology, 2017, 139, 1242-1252.e9.	1.5	265
5	Immunology of Food Allergy. Immunity, 2017, 47, 32-50.	6.6	231
6	Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer's patches. Allergy: European Journal of Allergy and Clinical Immunology, 2008, 63, 882-890.	2.7	188
7	Dendritic Cell (DC)-Specific Targeting Reveals Stat3 as a Negative Regulator of DC Function. Journal of Immunology, 2010, 184, 2638-2645.	0.4	187
8	Skin exposure promotes a Th2-dependent sensitization to peanut allergens. Journal of Clinical Investigation, 2014, 124, 4965-4975.	3.9	181
9	Mechanisms of Oral Tolerance. Clinical Reviews in Allergy and Immunology, 2018, 55, 107-117.	2.9	178
10	Toll-Like Receptor Signaling in Small Intestinal Epithelium Promotes B-Cell Recruitment and IgA Production in Lamina Propria. Gastroenterology, 2008, 135, 529-538.e1.	0.6	176
11	Long-term treatment with egg oral immunotherapy enhances sustained unresponsiveness that persists after cessation of therapy. Journal of Allergy and Clinical Immunology, 2016, 137, 1117-1127.e10.	1.5	149
12	Rapid transepithelial antigen transport in rat jejunum: Impact of sensitization and the hypersensitivity reaction. Gastroenterology, 1997, 113, 856-864.	0.6	148
13	Role of EHEC O157:H7 virulence factors in the activation of intestinal epithelial cell NF-κB and MAP kinase pathways and the upregulated expression of interleukin 8. Cellular Microbiology, 2002, 4, 635-648.	1.1	141
14	Gastrointestinal Dendritic Cells Promote Th2 Skewing via OX40L. Journal of Immunology, 2008, 180, 4441-4450.	0.4	132
15	Mechanisms underlying differential food allergy response to heated egg. Journal of Allergy and Clinical Immunology, 2011, 127, 990-997.e2.	1.5	130
16	Stress stimulates transepithelial macromolecular uptake in rat jejunum. American Journal of Physiology - Renal Physiology, 1998, 275, G1037-G1044.	1.6	127
17	Epicutaneous immunotherapy induces gastrointestinal LAP + regulatory TÂcells and prevents food-induced anaphylaxis. Journal of Allergy and Clinical Immunology, 2017, 139, 189-201.e4.	1.5	123
18	Enhanced intestinal transepithelial antigen transport in allergic rats is mediated by IgE and CD23 (FcÎμRII). Journal of Clinical Investigation, 2000, 106, 879-886.	3.9	119

#	Article	IF	CITATIONS
19	Food allergy and the microbiome: Current understandings and future directions. Journal of Allergy and Clinical Immunology, 2019, 144, 1468-1477.	1.5	118
20	Regulated Production of the T Helper 2–Type T-Cell Chemoattractant TARC by Human Bronchial Epithelial CellsIn Vitroand in Human Lung Xenografts. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 382-389.	1.4	115
21	Mucosal Immunology of Food Allergy. Current Biology, 2013, 23, R389-R400.	1.8	107
22	Role for IL-4 in macromolecular transport across human intestinal epithelium. American Journal of Physiology - Cell Physiology, 1999, 276, C1046-C1052.	2.1	105
23	Enhanced transepithelial antigen transport in intestine of allergic mice is mediated by IgE/CD23 and regulated by interleukin-4. Gastroenterology, 2001, 121, 370-381.	0.6	99
24	Systemic innate immune activation in food protein–induced enterocolitis syndrome. Journal of Allergy and Clinical Immunology, 2017, 139, 1885-1896.e9.	1.5	97
25	Oral immunotherapy induces local protective mechanisms in the gastrointestinal mucosa. Journal of Allergy and Clinical Immunology, 2012, 129, 1579-1587.e1.	1.5	89
26	Food allergy: an enigmatic epidemic. Trends in Immunology, 2013, 34, 390-397.	2.9	89
27	Single-cell profiling of peanut-responsive T cells in patients with peanut allergy reveals heterogeneous effector TH2 subsets. Journal of Allergy and Clinical Immunology, 2018, 141, 2107-2120.	1.5	88
28	Transcytosis of IgE–Antigen Complexes by CD23a in Human Intestinal Epithelial Cells and Its Role in Food Allergy. Gastroenterology, 2006, 131, 47-58.	0.6	86
29	Differential effects of the second SARS-CoV-2 mRNA vaccine dose on TÂcell immunity in naive and COVID-19 recovered individuals. Cell Reports, 2021, 36, 109570.	2.9	86
30	Role of TLR4 in allergic sensitization to food proteins in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 64-71.	2.7	83
31	Allergic sensitization can be induced via multiple physiologic routes in an adjuvant-dependent manner. Journal of Allergy and Clinical Immunology, 2011, 128, 1251-1258.e2.	1.5	79
32	Neutrophil-independence of the initiation of colonic injury. Digestive Diseases and Sciences, 1994, 39, 2575-2588.	1.1	78
33	Humoral and cellular responses to casein in patients with food protein–induced enterocolitis to cow's milk. Journal of Allergy and Clinical Immunology, 2017, 139, 572-583.	1.5	78
34	Food Protein-Induced Enterocolitis Syndrome. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 24-35.	2.0	77
35	Immunophysiology of experimental food allergy. Mucosal Immunology, 2009, 2, 24-32.	2.7	75
36	Role of maternal elimination diets and human milk IgA in the development of cow's milk allergy in the infants. Clinical and Experimental Allergy, 2014, 44, 69-78.	1.4	75

#	Article	IF	CITATIONS
37	Microbiome and food allergy. Translational Research, 2017, 179, 199-203.	2.2	71
38	TH2 adjuvants: Implications for food allergy. Journal of Allergy and Clinical Immunology, 2008, 121, 1311-1320.	1.5	70
39	Can we produce true tolerance in patients with food allergy?. Journal of Allergy and Clinical Immunology, 2013, 131, 14-22.	1.5	70
40	Mucosal Pathophysiology and Inflammatory Changes in the Late Phase of the Intestinal Allergic Reaction in the Rat. American Journal of Pathology, 2001, 158, 681-690.	1.9	69
41	Heparin reduces nonspecific eosinophil staining artifacts in mass cytometry experiments. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 601-607.	1.1	64
42	Notch-1 Signaling Regulates Intestinal Epithelial Barrier Function, Through Interaction With CD4+ T Cells, in Mice and Humans. Gastroenterology, 2011, 140, 550-559.	0.6	62
43	The rise of food allergy: Environmental factors and emerging treatments. EBioMedicine, 2016, 7, 27-34.	2.7	61
44	Thymic Stromal Lymphopoietin Is Required for Gastrointestinal Allergy but Not Oral Tolerance. Gastroenterology, 2010, 139, 1301-1309.e4.	0.6	60
45	Secreted IgD Amplifies Humoral T Helper 2 Cell Responses by Binding Basophils via Galectin-9 and CD44. Immunity, 2018, 49, 709-724.e8.	6.6	60
46	Immunopathophysiology of food protein–induced enterocolitis syndrome. Journal of Allergy and Clinical Immunology, 2015, 135, 1108-1113.	1.5	59
47	CD4 T cells activated in the mesenteric lymph node mediate gastrointestinal food allergy in mice. American Journal of Physiology - Renal Physiology, 2007, 293, G1234-G1243.	1.6	58
48	Production of MDC/CCL22 by human intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2001, 280, G1217-G1226.	1.6	57
49	TNFα-dependent development of lymphoid tissue in the absence of RORγt+ lymphoid tissue inducer cells. Mucosal Immunology, 2014, 7, 602-614.	2.7	57
50	PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nature Communications, 2018, 9, 5238.	5.8	55
51	In vivo methods for testing allergenicity show that high hydrostatic pressure hydrolysates of β-lactoglobulin are immunologically inert. Journal of Dairy Science, 2012, 95, 541-548.	1.4	54
52	Induction of sustained unresponsiveness after egg oral immunotherapy compared to baked egg therapy in children with egg allergy. Journal of Allergy and Clinical Immunology, 2020, 146, 851-862.e10.	1.5	53
53	Mechanisms Underlying Induction of Tolerance to Foods. Immunology and Allergy Clinics of North America, 2016, 36, 87-102.	0.7	50
54	Targeting Toll-like receptors on dendritic cells modifies the TH2 response to peanut allergens in vitro. Journal of Allergy and Clinical Immunology, 2010, 126, 92-97.e5.	1.5	47

#	Article	IF	CITATIONS
55	Allergen-IgE Complexes Trigger CD23-Dependent CCL20 Release From Human Intestinal Epithelial Cells. Gastroenterology, 2007, 133, 1905-1915.	0.6	45
56	Physiological Contribution of CD44 as a Ligand for E-Selectin during Inflammatory T-Cell Recruitment. American Journal of Pathology, 2011, 178, 2437-2446.	1.9	43
57	Mucosal immunology of tolerance and allergy in the gastrointestinal tract. Immunologic Research, 2012, 54, 75-82.	1.3	43
58	Pathogenesis of IgEâ€mediated food allergy. Clinical and Experimental Allergy, 2015, 45, 1483-1496.	1.4	41
59	Factors Regulating the Effect of IL-4 on Intestinal Epithelial Barrier Function. International Archives of Allergy and Immunology, 2002, 129, 219-227.	0.9	39
60	Mucosal antibodies in the regulation of tolerance and allergy to foods. Seminars in Immunopathology, 2012, 34, 633-642.	2.8	38
61	Mechanisms underlying induction of allergic sensitization by Pru p 3. Clinical and Experimental Allergy, 2017, 47, 1398-1408.	1.4	38
62	Egg-specific IgE and basophil activation but not egg-specific T-cell counts correlate with phenotypes of clinical egg allergy. Journal of Allergy and Clinical Immunology, 2018, 142, 149-158.e8.	1.5	38
63	Immune-epithelial interactions in host defense American Journal of Tropical Medicine and Hygiene, 1999, 60, 16-25.	0.6	35
64	Mouse and human Notch-1 regulate mucosal immune responses. Mucosal Immunology, 2014, 7, 995-1005.	2.7	34
65	Epicutaneous immunotherapy for treatment of peanut allergy: Follow-up from the Consortium for Food Allergy Research. Journal of Allergy and Clinical Immunology, 2021, 147, 992-1003.e5.	1.5	34
66	Food allergy: mechanisms and therapeutics. Current Opinion in Immunology, 2011, 23, 794-800.	2.4	33
67	Immune factors in breast milk related to infant milk allergy are independent of maternal atopy. Journal of Allergy and Clinical Immunology, 2015, 135, 1390-1393.e6.	1.5	32
68	Pathophysiology of food-induced anaphylaxis. Current Allergy and Asthma Reports, 2008, 8, 201-208.	2.4	31
69	A Functional Role for CCR6 on Proallergic T Cells in the Gastrointestinal Tract. Gastroenterology, 2010, 138, 275-284.e4.	0.6	31
70	Transcriptional Profiling of Egg Allergy and Relationship to Disease Phenotype. PLoS ONE, 2016, 11, e0163831.	1.1	30
71	Allergen-specific T cells and clinical features of food allergy: Lessons from CoFAR immunotherapy cohorts. Journal of Allergy and Clinical Immunology, 2022, 149, 1373-1382.e12.	1.5	30
72	Mass cytometry profiling the response of basophils and the complete peripheral blood compartment to peanut. Journal of Allergy and Clinical Immunology, 2016, 138, 1741-1744.e9.	1.5	29

#	Article	IF	CITATIONS
73	Mast cell heterogeneity underlies different manifestations of food allergy in mice. PLoS ONE, 2018, 13, e0190453.	1.1	28
74	Pathophysiology of Non-IgE-Mediated Food Allergy. ImmunoTargets and Therapy, 2021, Volume 10, 431-446.	2.7	26
75	The COMPARE Database: A Public Resource for Allergen Identification, Adapted for Continuous Improvement. Frontiers in Allergy, 2021, 2, 700533.	1.2	24
76	Mechanisms that define transient versus persistent food allergy. Journal of Allergy and Clinical Immunology, 2019, 143, 453-457.	1.5	23
77	Pathogenesis of IgEâ€mediated food allergy and implications for future immunotherapeutics. Pediatric Allergy and Immunology, 2021, 32, 1416-1425.	1.1	22
78	Breast milk IgA to foods has different epitope specificity than serum IgA—Evidence for enteroâ€mammary link for foodâ€specific IgA?. Clinical and Experimental Allergy, 2017, 47, 1275-1284.	1.4	21
79	Emerging Food Allergy Biomarkers. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2516-2524.	2.0	21
80	Advances in understanding immune mechanisms of food protein–induced enterocolitis syndrome. Annals of Allergy, Asthma and Immunology, 2021, 126, 478-481.	0.5	21
81	The role of TARC in the pathogenesis of allergic asthma. Drug News and Perspectives, 2002, 15, 10.	1.9	21
82	Role of Maternal Dietary Peanut Exposure in Development of Food Allergy and Oral Tolerance. PLoS ONE, 2015, 10, e0143855.	1.1	21
83	Acute FPIES reactions are associated with an IL-17 inflammatory signature. Journal of Allergy and Clinical Immunology, 2021, 148, 895-901.e6.	1.5	20
84	Immunotherapy using algalâ€produced Ara h 1 core domain suppresses peanut allergy in mice. Plant Biotechnology Journal, 2016, 14, 1541-1550.	4.1	18
85	Epicutaneous Tolerance Induction to a Bystander Antigen Abrogates Colitis and Ileitis in Mice. Inflammatory Bowel Diseases, 2017, 23, 1972-1982.	0.9	18
86	The Consortium for Food Allergy Research (CoFAR): The first generation. Journal of Allergy and Clinical Immunology, 2019, 143, 486-493.	1.5	18
87	Reduced severity of peanut-induced anaphylaxis in TLR9-deficient mice is associated with selective defects in humoral immunity. Mucosal Immunology, 2013, 6, 114-121.	2.7	17
88	Transforming Growth Factor β Signaling Controls Activities of Human Intestinal CD8+T Suppressor Cells. Gastroenterology, 2013, 144, 601-612.e1.	0.6	16
89	Future Therapies for IgE-Mediated Food Allergy. Current Pediatrics Reports, 2014, 2, 119-126.	1.7	14
90	Antibody-Mediated Antigen Sampling across Intestinal Epithelial Barriers. Annals of the New York Academy of Sciences, 2006, 1072, 253-261.	1.8	13

#	Article	IF	CITATIONS
91	Mechanisms of Allergic Sensitization to Foods: Bypassing Immune Tolerance Pathways. Immunology and Allergy Clinics of North America, 2012, 32, 1-10.	0.7	13
92	Triclosan promotes epicutaneous sensitization to peanut in mice. Clinical and Translational Allergy, 2016, 6, 13.	1.4	13
93	Flow cytometric identification of T 13 cells in mouse and human. Journal of Allergy and Clinical Immunology, 2021, 147, 470-483.	1.5	13
94	Pertussis Adjuvant Prolongs Intestinal Hypersensitivity. International Archives of Allergy and Immunology, 1999, 119, 205-211.	0.9	12
95	An Examination of Clinical and Immunologic Outcomes in Food Allergen Immunotherapy by Route of Administration. Current Allergy and Asthma Reports, 2015, 15, 35.	2.4	12
96	Phorbol myristate acetateex vivo model of enhanced colonic epithelial permeability. Digestive Diseases and Sciences, 1995, 40, 2268-2279.	1.1	11
97	Dysbiosis in food allergy and implications for microbial therapeutics. Journal of Clinical Investigation, 2021, 131, .	3.9	9
98	Effects of neuropeptide Y and substance P on antigen-induced ion secretion in rat jejunum. American Journal of Physiology - Renal Physiology, 1996, 271, G987-G992.	1.6	8
99	Bugs versus Bugs: Probiotics, Microbiome and Allergy. International Archives of Allergy and Immunology, 2014, 163, 165-167.	0.9	8
100	Impact of granulocyte contamination on PBMC integrity of shipped blood samples: Implications for multi-center studies monitoring regulatory T cells. Journal of Immunological Methods, 2017, 449, 23-27.	0.6	8
101	Immune Characterization of Bone Marrow-Derived Models of Mucosal and Connective Tissue Mast Cells. Allergy, Asthma and Immunology Research, 2018, 10, 268.	1.1	8
102	Update on Food Protein–Induced Enterocolitis Syndrome (FPIES). Current Allergy and Asthma Reports, 2022, 22, 113-122.	2.4	8
103	Effect of Psychoneural Factors on Intestinal Epithelial Function. Canadian Journal of Gastroenterology & Hepatology, 1997, 11, 353-357.	1.8	7
104	Treatment of Intestinal Inflammation With Epicutaneous Immunotherapy Requires TGF-β and IL-10 but Not Foxp3+ Tregs. Frontiers in Immunology, 2021, 12, 637630.	2.2	7
105	Applications of Mouse Models to the Study of Food Allergy. Methods in Molecular Biology, 2021, 2223, 1-17.	0.4	7
106	The year in food allergy. Journal of Allergy and Clinical Immunology, 2022, 149, 867-873.	1.5	6
107	Association between prenatal immune phenotyping and cord blood leukocyte telomere length in the PRISM pregnancy cohort. Environmental Research, 2020, 191, 110113.	3.7	5
108	Demonstration of distinct pathways of mast cellâ€dependent inhibition of Treg generation using murine bone marrowâ€derived mast cells. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2088-2091.	2.7	5

#	Article	IF	CITATIONS
109	Role of innate immunity and myeloid cells in susceptibility to allergic disease. Annals of the New York Academy of Sciences, 2021, 1499, 42-53.	1.8	4
110	Unlocking the stress-allergy puzzle: need for a more comprehensive stress model. Annals of Allergy, Asthma and Immunology, 2014, 113, 1-2.	0.5	3
111	Data-driven discovery of mid-pregnancy immune markers associated with maternal lifetime stress: results from an urban pre-birth cohort. Stress, 2020, 23, 349-358.	0.8	3
112	Is the plasticity of the Th17 subset a key source of allergenic Th2 responses?. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3238-3240.	2.7	3
113	Mucosal Immunology. , 2010, , 471-476.		1
114	Microbial Regulation of IgE Production in Early Life. Journal of Allergy and Clinical Immunology, 2015, 135, AB67.	1.5	1
115	Mucosal Immunology. , 2016, , 365-370.e2.		1
116	Food Allergy: Immunophysiology. , 2005, , 1335-1349.		1
117	Mass Cytometry Analysis of Whole Blood Response to an Allergen. Methods in Molecular Biology, 2022, , 269-280.	0.4	1
118	Profile Of Food Allergen-Specific T Cells In Allergic and Clinically Tolerant Individuals. Journal of Allergy and Clinical Immunology, 2014, 133, AB292.	1.5	0
119	Epicutaneous Sensitization To Food Allergens Induce IL-4-Producing Cells and T Follicular Helper (Tfh) Cells In An IL-6 and IL-1-Dependent Manner. Journal of Allergy and Clinical Immunology, 2014, 133, AB51.	1.5	0
120	IgE-Mediated Food Allergy. , 2015, , 1649-1660.		0
121	O-014 Treatment of Colitis by Epicutaneous Immunotherapy in a Murine Model. Inflammatory Bowel Diseases, 2016, 22, S5.	0.9	0
122	Legends of allergy and immunology: Hugh A. Sampson. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1519-1521.	2.7	0
123	Proteomic profiling of the inflammatory response during oral challenge to peanut. Journal of Allergy and Clinical Immunology, 2021, 147, AB86.	1.5	0
124	New ideas: Food allergy stems from food quality sensing. Journal of Allergy and Clinical Immunology, 2021, 148, 355-357.	1.5	0
125	Gastrointestinal Mucosal Immunology. , 2014, , 1084-1094.		0
126	28 ACCELERATED TRANSCELLULAR ANTIGEN UPTAKE MECHANISM IN THE INTESTINE OF SENSITIZED RATS. Journal of Pediatric Gastroenterology and Nutrition, 1996, 22, 416.	0.9	0

#	Article	IF	CITATIONS
127	Experimental Approaches to the Study of Food Allergy. , 0, , 543-553.		0