
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6726531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. Journal of Computational and Applied Mathematics, 2009, 233, 142-149.	1.1	128
2	On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces. Computers and Mathematics With Applications, 2010, 59, 603-611.	1.4	115
3	Applications of measures of noncompactness to the infinite system of differential equations in spaces. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 2111-2115.	0.6	115
4	Statistical convergence of double sequences in intuitionistic fuzzy normed spaces. Chaos, Solitons and Fractals, 2009, 41, 2414-2421.	2.5	108
5	Generalized weighted statistical convergence and application. Applied Mathematics and Computation, 2013, 219, 9821-9826.	1.4	104
6	Construction of a new family of Bernsteinâ€Kantorovich operators. Mathematical Methods in the Applied Sciences, 2017, 40, 7749-7759.	1.2	103
7	A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean. Applied Mathematics and Computation, 2014, 228, 162-169.	1.4	100
8	On ideal convergence in probabilistic normed spaces. Mathematica Slovaca, 2012, 62, 49-62.	0.3	92
9	On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos, Solitons and Fractals, 2009, 42, 1731-1737.	2.5	85
10	Approximation by Bivariate (p,Âq)-Bernstein–Kantorovich Operators. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 655-662.	0.7	78
11	Korovkin type approximation theorems obtained through generalized statistical convergence. Applied Mathematics Letters, 2010, 23, 1382-1387.	1.5	77
12	Statistical Convergence of Double Sequences. , 2014, , 117-132.		73
13	An application of almost convergence in approximation theorems. Applied Mathematics Letters, 2011, 24, 1856-1860.	1.5	69
14	On Kantorovich modification of (p , q) $(p,q$) $-Baskakov operators. Journal of Inequalities and Applications, 2016, 2016, .$	0.5	69
15	Approximation of functions by Stancu variant of Bernstein–Kantorovich operators based on shape parameter \$\${varvec{alpha }}\$\$. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2020, 114, 1.	0.6	64
16	Construction of Stancu-Type Bernstein Operators Based on Bézier Bases with Shape Parameter λ. Symmetry, 2019, 11, 316.	1.1	60
17	Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 1955-1973.	0.6	60
18	Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. International Journal of General Systems, 2019, 48, 492-506.	1.2	58

#	Article	IF	CITATIONS
19	On stability of a cubic functional equation in intuitionistic fuzzy normed spaces. Chaos, Solitons and Fractals, 2009, 42, 2997-3005.	2.5	56
20	Approximation by (p,Âq)-Baskakov–Durrmeyer–Stancu Operators. Complex Analysis and Operator Theory, 2018, 12, 1453-1468.	0.3	56
21	Generalized Statistically Almost Convergence Based on the Difference Operator which Includes the (p,Âq)-Gamma Function and Related Approximation Theorems. Results in Mathematics, 2018, 73, 1.	0.4	55
22	Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems. Filomat, 2019, 33, 4549-4560.	0.2	48
23	Generalized statistical convergence and statistical core of double sequences. Acta Mathematica Sinica, English Series, 2010, 26, 2131-2144.	0.2	42
24	Approximation of functions by a new class of generalized Bernstein–Schurer operators. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2020, 114, 1.	0.6	42
25	Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space. Journal of Computational and Applied Mathematics, 2011, 235, 2137-2146.	1.1	41
26	\$ar lambda \$-statistically convergent double sequences in probabilistic normed spaces. Mathematica Slovaca, 2012, 62, 99-108.	0.3	39
27	Stability of Jensen functional equation in intuitionistic fuzzy normed space. Chaos, Solitons and Fractals, 2009, 42, 2989-2996.	2.5	38
28	Approximation by the Parametric Generalization of Baskakov–Kantorovich Operators Linking with Stancu Operators. Iranian Journal of Science and Technology, Transaction A: Science, 2021, 45, 593-605.	0.7	38
29	Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative. Chaos, Solitons and Fractals, 2009, 42, 1010-1015.	2.5	37
30	Statistical summability (C,1) and a Korovkin type approximation theorem. Journal of Inequalities and Applications, 2012, 2012, 172.	0.5	37
31	Convergence Methods for Double Sequences and Applications. , 2014, , .		35
32	Statistical weighted A-summability with application to Korovkin's type approximation theorem. Journal of Inequalities and Applications, 2016, 2016, .	0.5	35
33	On(Δm,I)-Statistical Convergence of Orderα. Scientific World Journal, The, 2014, 2014, 1-5.	0.8	33
34	On Kantorovich Modification of (p,Âq)-Bernstein Operators. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1459-1464.	0.7	32
35	Statistical Convergence of Double Sequences in Locally Solid Riesz Spaces. Abstract and Applied Analysis, 2012, 2012, 1-9.	0.3	31
36	Compact operators on some Fibonacci difference sequence spaces. Journal of Inequalities and Applications, 2015, 2015, .	0.5	29

#	Article	IF	CITATIONS
37	Application of measures of noncompactness to the infinite system of second-order differential equations in â"" p \$ell_{p}\$ spaces. Advances in Difference Equations, 2016, 2016, .	3.5	29
38	Lacunary statistically convergent double sequences in probabilistic normed spaces. Annali Dell'Universita Di Ferrara, 2012, 58, 331-339.	0.7	27
39	Existence of solutions of infinite systems of differential equations of general order with boundary conditions in the spaces <i>c</i> 0 and <i>â""</i> ₁ via the measure of noncompactness. Mathematical Methods in the Applied Sciences, 2018, 41, 3558-3569.	1.2	27
40	Regularly <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>lf </mml:mi></mml:math> -conservative and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>lf </mml:mi>-coercive four dimensional matrices. Computers</mml:math 	1.4	26
41	and Mathematics With Applications, 2008, 56, 1580-1586. Genuine modified Bernstein–Durrmeyer operators. Journal of Inequalities and Applications, 2018, 2018, 104.	0.5	26
42	Blendingâ€ŧype approximation by Lupaş–Durrmeyerâ€ŧype operators involving Pólya distribution. Mathematical Methods in the Applied Sciences, 2021, 44, 9407-9418.	1.2	25
43	Some classes of ideal convergent sequences and generalized difference matrix operator. Filomat, 2017, 31, 1827-1834.	0.2	25
44	Intuitionistic fuzzy stability of a Jensen functional equation via fixed point technique. Mathematical and Computer Modelling, 2011, 54, 2403-2409.	2.0	24
45	Existence of Solution for Non-Linear Functional Integral Equations of Two Variables in Banach Algebra. Symmetry, 2019, 11, 674.	1.1	24
46	Durrmeyer type (p,q)-Baskakov operators preserving linear functions. Journal of Mathematical Inequalities, 2018, , 961-973.	0.5	24
47	Double Ïf-multiplicative matrices. Journal of Mathematical Analysis and Applications, 2007, 327, 991-996.	0.5	22
48	Statistical summability through a lacunary sequence in locally solid Riesz spaces. Journal of Inequalities and Applications, 2012, 2012, .	0.5	21
49	On λ-statistical convergence and strongly λ-summable functions of order α. Journal of Inequalities and Applications, 2013, 2013, .	0.5	21
50	Statistical convergence in measure for double sequences of fuzzy-valued functions. Soft Computing, 2020, 24, 6613-6622.	2.1	20
51	On <mml:math <br="" altimg="si1.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/Math/Math/MathML">overflow="scroll"><mml:mi>if </mml:mi> </mml:math> -conservative and boundedly <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>if </mml:mi> -conservative four-dimensional matrices.</mml:math 	1.4	19
52	Computers and Mathematics With Applications, 2010, 59, 880-885. Ideal convergence of double sequences in random 2-normed spaces. Advances in Difference Equations, 2012, 2012, .	3.5	19
53	On the stability of a cubic functional equation in random 2-normed spaces. Advances in Difference Equations, 2012, 2012, .	3.5	19
54	Approximation by bivariate generalized Bernstein–Schurer operators and associated GBS operators. Advances in Difference Equations, 2020, 2020, .	3.5	19

#	Article	IF	CITATIONS
55	Intuitionistic fuzzy 2-metric space and its completion. Chaos, Solitons and Fractals, 2009, 42, 1258-1265.	2.5	18
56	Korovkin second theorem via statistical summability (C , 1). Journal of Inequalities and Applications, 2013, 2013, .	0.5	18
57	Weighted almost convergence and related infinite matrices. Journal of Inequalities and Applications, 2018, 2018, 15.	0.5	18
58	Statistical convergence of double sequences in fuzzy normed spaces. Filomat, 2012, 26, 673-681.	0.2	18
59	Statistical (C,1) (E,1) summability and Korovkin's theorem. Filomat, 2016, 30, 387-393.	0.2	18
60	On statistical convergence of double sequences of fuzzy valued functions. Journal of Intelligent and Fuzzy Systems, 2017, 32, 4331-4342.	0.8	17
61	Blending type approximation by Ï"-Baskakov-Durrmeyer type hybrid operators. Advances in Difference Equations, 2020, 2020, .	3.5	16
62	A study on fractional HIVâ€AIDs transmission model with awareness effect. Mathematical Methods in the Applied Sciences, 2023, 46, 8334-8348.	1.2	16
63	Approximation by \$\$vartheta \$\$-Baskakov–Durrmeyer-Type Hybrid Operators. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 1111-1118.	0.7	15
64	Approximation of functions by a class of Durrmeyer–Stancu type operators which includes Euler's beta function. Advances in Difference Equations, 2021, 2021, .	3.5	15
65	Some new double sequence spaces of invariant means. Glasnik Matematicki, 2010, 45, 139-153.	0.1	15
66	Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems. AIMS Mathematics, 2020, 5, 650-672.	0.7	14
67	Fuzzy stability of a cubic functional equation via fixed point technique. Advances in Difference Equations, 2012, 2012, .	3.5	13
68	Vector valued Orlicz-Lorentz sequence spaces and their operator ideals. Journal of Nonlinear Science and Applications, 2017, 10, 338-353.	0.4	13
69	Schauder Basis, Separability, and Approximation Property in Intuitionistic Fuzzy Normed Space. Abstract and Applied Analysis, 2010, 2010, 1-14.	0.3	12
70	Stability of functional equation obtained through a fixed-point alternative in intuitionistic fuzzy normed spaces. Advances in Difference Equations, 2012, 2012, .	3.5	11
71	Statistical convergence through de la Vallée-Poussin mean in locally solid Riesz spaces. Advances in Difference Equations, 2013, 2013, .	3.5	11
72	On difference sequence spaces of fractional-order involving Padovan numbers. Asian-European Journal of Mathematics, 2021, 14, 2150095.	0.2	11

#	Article	IF	CITATIONS
73	Ideal Convergence of Random Variables. Journal of Function Spaces and Applications, 2013, 2013, 1-7.	0.5	10
74	Some new results on approximation in fuzzy 2-normed spaces. Mathematical and Computer Modelling, 2011, 53, 574-580.	2.0	9
75	Some Matrix Transformations of Convex and Paranormed Sequence Spaces into the Spaces of Invariant Means. Journal of Function Spaces and Applications, 2012, 2012, 1-10.	0.5	9
76	Some Spaces of Double Sequences Obtained through Invariant Mean and Related Concepts. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.3	9
77	WeightedA-Statistical Convergence for Sequences of Positive Linear Operators. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	9
78	New Difference Sequence Spaces Defined by Musielak-Orlicz Function. Abstract and Applied Analysis, 2014, 2014, 1-9.	0.3	9
79	Generalized spaces of double sequences for Orlicz functions and bounded-regular matrices over n-normed spaces. Journal of Inequalities and Applications, 2014, 2014, .	0.5	9
80	Solution of the Ulam stability problem for Euler–Lagrange–Jensen <i>k</i> â€quintic mappings. Mathematical Methods in the Applied Sciences, 2017, 40, 3017-3025.	1.2	9
81	Sequence spaces derived by the triple band generalized Fibonacci difference operator. Advances in Difference Equations, 2020, 2020, .	3.5	9
82	Almost convergence and some matrix transformations. Filomat, 2007, 21, 261-266.	0.2	9
83	A new variant of statistical convergence. Journal of Inequalities and Applications, 2013, 2013, .	0.5	8
84	Stability of Various Functional Equations in Non-Archimedean Intuitionistic Fuzzy Normed Spaces. Discrete Dynamics in Nature and Society, 2012, 2012, 1-16.	0.5	7
85	On the Ulam stability of mixed type QA mappings in IFN-spaces. Advances in Difference Equations, 2013, 2013, .	3.5	7
86	On the Ideal Convergence of Double Sequences in Locally Solid Riesz Spaces. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.3	7
87	Estimation of upper bounds of certain matrix operators on Binomial weighted sequence spaces. Advances in Operator Theory, 2020, 5, 1376-1389.	0.3	7
88	Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces. AEJ - Alexandria Engineering Journal, 2022, 61, 2010-2015.	3.4	7
89	Sequence spaces of fuzzy numbers defined by a Musielak-Orlicz function. Filomat, 2015, 29, 1461-1468.	0.2	7
90	Solution of the Ulam stability problem for Euler-Lagrange-Jensen k-cubic mappings. Filomat, 2016, 30, 305-312.	0.2	7

#	Article	IF	CITATIONS
91	Banach limit and some new spaces of double sequences. Turkish Journal of Mathematics, 0, , .	0.3	7
92	Durrmeyer-type generalization of μ-Bernstein operators. Filomat, 2022, 36, 349-360.	0.2	7
93	Approximation Process Based on Parametric Generalization of Schurer–Kantorovich Operators and their Bivariate Form. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 0, , .	0.8	7
94	Some Paranormed Double Difference Sequence Spaces for Orlicz Functions and Bounded-Regular Matrices. Abstract and Applied Analysis, 2014, 2014, 1-10.	0.3	6
95	Sequence Spaces and Spectrum of q-Difference Operator of Second Order. Symmetry, 2022, 14, 1155.	1.1	6
96	Iterative algorithm and theoretical treatment of existence of solution for (k,Âz)-Riemann–Liouville fractional integral equations. Journal of Pseudo-Differential Operators and Applications, 2022, 13, .	0.3	6
97	INVARIANT MEAN AND SOME CORE THEOREMS FOR DOUBLE SEQUENCES. Taiwanese Journal of Mathematics, 2010, 14, .	0.2	5
98	Statistical Approximation for Periodic Functions of Two Variables. Journal of Function Spaces and Applications, 2013, 2013, 1-5.	0.5	5
99	Almost Conservative Four-Dimensional Matrices through de la Vallée-Poussin Mean. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.3	5
100	Linear isomorphic spaces of fractional-order difference operators. AEJ - Alexandria Engineering Journal, 2021, 60, 1155-1164.	3.4	5
101	Domain of Padovan q-difference matrix in sequence spaces lp and lâ^ž. Filomat, 2022, 36, 905-919.	0.2	5
102	Stancu-Type Generalized q-Bernstein–Kantorovich Operators Involving Bézier Bases. Mathematics, 2022, 10, 2057.	1.1	5
103	Bézier-Summation-Integral-Type Operators That Include Pólya–Eggenberger Distribution. Mathematics, 2022, 10, 2222.	1.1	5
104	Matrix transformations between the spaces of CesÃro sequences and invariant means. International Journal of Mathematics and Mathematical Sciences, 2006, 2006, 1-8.	0.3	4
105	Erratum to â€~Coupled fixed point theorems for α-ï^-contractive type mappings in partially ordered metric spaces'. Fixed Point Theory and Applications, 2013, 2013, .	1.1	4
106	Coupled coincidence point theorems for compatible mappings in partially ordered intuitionistic generalized fuzzy metric spaces. Fixed Point Theory and Applications, 2013, 2013, .	1.1	4
107	Double Lacunary Density and Some Inclusion Results in Locally Solid Riesz Spaces. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.3	4
108	On the stability of fuzzy set-valued functional equations. Cogent Mathematics, 2017, 4, 1281557.	0.4	4

2

#	Article	IF	CITATIONS
109	A Certain Class of Relatively Equi-Statistical Fuzzy Approximation Theorems. European Journal of Pure and Applied Mathematics, 2020, 13, 1212-1230.	0.1	4
110	On Coupled Fixed Point Theorems for Nonlinear Contractions in Partially Ordered -Metric Spaces. Abstract and Applied Analysis, 2012, 2012, 1-15.	0.3	3
111	Korovkin Type Approximation Theorem for Almost and Statistical Convergence. Springer Optimization and Its Applications, 2012, , 487-494.	0.6	3
112	Nonlinear operators on fuzzy 2-normed spaces and Fréchet derivative. Journal of Intelligent and Fuzzy Systems, 2013, 25, 1043-1051.	0.8	3
113	Statistical Summability of Double Sequences through de la Vallée-Poussin Mean in Probabilistic Normed Spaces. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.3	3
114	On Some Classes of Double Difference Sequences of Interval Numbers. Abstract and Applied Analysis, 2014, 2014, 1-8.	0.3	3
115	On lacunary statistical boundedness. Journal of Inequalities and Applications, 2014, 2014, .	0.5	3
116	Orlicz-Garling sequence spaces of difference operator and their domination in Orlicz-Lorentz spaces. Journal of Inequalities and Applications, 2018, 2018, 34.	0.5	3
117	Some inequalities on statistical summability (C,1). Journal of Mathematical Inequalities, 2008, , 239-245.	0.5	3
118	Some inequalities on sublinear functionals related to the invariant mean for double sequences. Mathematical Inequalities and Applications, 2010, , 157-163.	0.1	3
119	Existence of Solutions for Nonlinear Integral Equations in Tempered Sequence Spaces via Generalized Darbo-Type Theorem. Journal of Function Spaces, 2022, 2022, 1-8.	0.4	3
120	Stability of Quartic Functional Equation in Modular Spaces via Hyers and Fixed-Point Methods. Mathematics, 2022, 10, 1938.	1.1	3
121	Some results on a tripled fixed point for nonlinear contractions in partially ordered G-metric spaces. Fixed Point Theory and Applications, 2012, 2012, .	1.1	2
122	A-Statistical Cluster Points in Finite Dimensional Spaces and Application to Turnpike Theorem. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.3	2
123	Compact Operators for Almost Conservative and Strongly Conservative Matrices. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.3	2
124	Korovkin type approximation theorem for functions of two variables via statistical summability (C,) Tj ETQq0	0 0 rgBT /	Overlock 10
125	Matrix transformations of paranormed sequence spaces through de la Vallée-Pousin mean. Acta Scientiarum - Technology, 2015, 37, 71.	0.4	2

Some Generalized Difference Sequence Spaces Defined by a Sequence of Moduli in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math>-Normed Spaces. Journal of Function Spaces, 2015, 2015, 1-8.

126

		Syed Abdul Mohiuddine		
#	Article		IF	CITATIONS
127	Compact matrix operators on a new sequence space related to â,," p \$ell_{p}\$ spaces. Journal of Inequalities and Applications, 2016, 2016 Spaces over <mml:math< td=""><td></td><td>0.5</td><td>2</td></mml:math<>		0.5	2
128	Compact matrix operators on a new sequence space related to â,," p \$ell_{p}\$ spaces. Journal of Inequalities and Applications, 2016, 2016, Some Seminormed Difference Sequence Spaces over <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mitup: 1998="" id="M1" math="" mathml"="" www.w3.org=""><mml:mitup: 1998="" id="M2" math="" mathml"="" www.w3.org=""><mml:mitup: 1998="" math="" mathm<="" td="" www.w3.org=""><td>by a IL"</td><td></td><td></td></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:mitup:></mml:math>	by a IL"		

#	Article	IF	CITATIONS
145	Application of Almost Convergence in Approximation Theorems for Functions of Two Variables. , 2014, , 99-115.		0
146	Almost and Statistical Convergence of Ordinary Sequences: A Preview. , 2014, , 1-15.		0
147	Almost Convergence and Core Theorems. , 2014, , 79-97.		0
148	SOME NEW TYPES OF CONTINUITY IN ASYMMETRIC METRIC SPACES. Facta Universitatis Series Mathematics and Informatics, 0, , 485.	0.1	0
149	Parametric Identification for the Biased Ship Roll Motion Model Using Genocchi Polynomials. Journal of Mathematics, 2022, 2022, 1-9.	0.5	0
150	Stability Results of Quadratic-Additive Functional Equation Based on Hyers Technique in Matrix Paranormed Spaces. Mathematics, 2022, 10, 1940.	1.1	0