List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6726243/publications.pdf Version: 2024-02-01

LUIZ F M VIEIDA

#	Article	IF	CITATIONS
1	A fixâ€andâ€optimize heuristic for the minmax regret shortest path arborescence problem under interval uncertainty. International Transactions in Operational Research, 2023, 30, 1120-1143.	2.7	3
2	UW-SEEDEX: A Pseudorandom-Based MAC Protocol for Underwater Acoustic Networks. IEEE Transactions on Mobile Computing, 2022, 21, 3402-3413.	5.8	9
3	Intra and inter-flow link aggregation in SDN. Telecommunication Systems, 2022, 79, 95-107.	2.5	5
4	A dynamic network coding MAC protocol for power line communication. Telecommunication Systems, 2021, 77, 359-375.	2.5	2
5	A cooperative protocol for pervasive underwater acoustic networks. Wireless Networks, 2021, 27, 1941-1963.	3.0	4
6	Dual Radio Networks: Are Two Disjoint Paths Enough?. IEEE Internet of Things Magazine, 2021, 4, 67-71.	2.6	3
7	OpenFlow data planes performance evaluation. Performance Evaluation, 2021, 147, 102194.	1.2	12
8	Fast Packet Processing with eBPF and XDP. ACM Computing Surveys, 2021, 53, 1-36.	23.0	89
9	A Proposal of a Dynamic Routing Multicast Protocol for Visible Light Communication Networks. , 2021, , .		0
10	Automatic MAC protocol selection in wireless networks based on reinforcement learning. Computer Communications, 2020, 149, 312-323.	5.1	11
11	SEGMETRIK: Protocol and metrics for advertisement performance tracking in VANETs. Vehicular Communications, 2020, 22, 100212.	4.0	2
12	Cellular automata-based byte error correction in QCA. Nano Communication Networks, 2020, 23, 100278.	2.9	8
13	A Continuous Restricted Boltzmann Machine and Logistic Regression Framework for Circuit Classification. , 2020, , .		2
14	Optimal Transmission Range and Charging Time for Qi-Compliant Systems. IEEE Transactions on Power Electronics, 2020, 35, 12765-12772.	7.9	4
15	Grayâ€code adder with parity generator – a novel quantumâ€dot cellular automata implementation. IET Circuits, Devices and Systems, 2020, 14, 243-250.	1.4	4
16	BloomTime: space-efficient stateful tracking of time-dependent network performance metrics. Telecommunication Systems, 2020, 74, 201-223.	2.5	1
17	CAPTAIN: A data collection algorithm for underwater optical-acoustic sensor networks. Computer Networks, 2020, 171, 107145.	5.1	12
18	Underwater Sensor Networks for Smart Disaster Management. IEEE Consumer Electronics Magazine, 2020, 9, 107-114.	2.3	18

#	Article	IF	CITATIONS
19	Underwater Wireless Sensor Networks. ACM Computing Surveys, 2019, 51, 1-36.	23.0	110
20	DYRP-VLC: A dynamic routing protocol for Wireless Ad-Hoc Visible Light Communication Networks. Ad Hoc Networks, 2019, 94, 101941.	5.5	11
21	FWB: Funneling Wider Bandwidth algorithm for high performance data collection in Wireless Sensor Networks. Computer Communications, 2019, 148, 136-151.	5.1	6
22	Water ping: ICMP for the internet of underwater things. Computer Networks, 2019, 152, 54-63.	5.1	15
23	SOAN: Selfâ€organizing aerial networks. Internet Technology Letters, 2019, 2, e104.	1.9	0
24	3DVS: Node scheduling in underwater sensor networks using 3D voronoi diagrams. Computer Networks, 2019, 159, 73-83.	5.1	6
25	Visible Light Communication: Concepts, Applications and Challenges. IEEE Communications Surveys and Tutorials, 2019, 21, 3204-3237.	39.4	317
26	DCTP-A and DCTP-I., 2019,,.		1
27	The internet of light: Impact of colors in LED-to-LED visible light communication systems. Internet Technology Letters, 2019, 2, e78.	1.9	8
28	A Joint Anypath Routing and Duty-Cycling Model for Sustainable Underwater Sensor Networks. IEEE Transactions on Sustainable Computing, 2019, 4, 314-325.	3.1	15
29	A MILP-based VND for the min-max regret Shortest Path Tree Problem with interval costs. Electronic Notes in Discrete Mathematics, 2018, 66, 39-46.	0.4	1
30	Autonomous Wireless Lake Monitoring. Computing in Science and Engineering, 2018, 20, 66-75.	1.2	14
31	Performance of Greedy Forwarding in Geographic Routing for the Internet of Drones. Internet Technology Letters, 2018, 1, e47.	1.9	5
32	Matrix: Multihop Address allocation and dynamic any-To-any Routing for 6LoWPAN. Computer Networks, 2018, 140, 28-40.	5.1	8
33	COPPER: Increasing Underwater Sensor Network Performance Through Nodes Cooperation. , 2018, , .		1
34	Enriching Traffic Information with a Spatiotemporal Model based on Social Media. , 2018, , .		11
35	Mobile Matrix: Routing under mobility in IoT, IoMT, and Social IoT. Ad Hoc Networks, 2018, 78, 84-98.	5.5	24

Comparison of data center traffic division policies using SDN. , 2018, , .

1

#	Article	IF	CITATIONS
37	FS-MAC: A flexible MAC platform for wireless networks. , 2018, , .		2
38	CGR: Centrality-based green routing for Low-power and Lossy Networks. Computer Networks, 2017, 129, 117-128.	5.1	7
39	EnOR: Energy balancing routing protocol for underwater sensor networks. , 2017, , .		37
40	Performance modeling and analysis of void-handling methodologies in underwater wireless sensor networks. Computer Networks, 2017, 126, 1-14.	5.1	30
41	CodeDrip: Improving data dissemination for wireless sensor networks with network coding. Ad Hoc Networks, 2017, 54, 42-52.	5.5	18
42	Network Coding for 5G Network and D2D Communication. , 2017, , .		8
43	Modeling, Analysis and Simulation of Wireless Power Transfer. , 2017, , .		4
44	CodePLC: A Network Coding MAC Protocol for Power Line Communication. , 2016, , .		3
45	FlushMF: A Transport Protocol Using Multiple Frequencies for Wireless Sensor Network. , 2016, , .		3
46	Modeling the sleep interval effects in duty-cycled underwater sensor networks. , 2016, , .		13
47	A Scenario Based Heuristic for the Robust Shortest Path Tree Problem**This work was partially supported by CNPq, CAPES, and FAPEMIG IFAC-PapersOnLine, 2016, 49, 443-448.	0.9	9
48	Wireless scheduling with multiple data rates: From physical interference to disk graphs. Computer Networks, 2016, 106, 64-76.	5.1	4
49	Link probability, node degree and coverage in three-dimensional networks. Ad Hoc Networks, 2016, 37, 153-159.	5.5	13
50	Survey on the design of underwater sensor nodes. Design Automation for Embedded Systems, 2016, 20, 171-190.	1.0	8
51	Design guidelines for opportunistic routing in underwater networks. , 2016, 54, 40-48.		83
52	Geographic and Opportunistic Routing for Underwater Sensor Networks. IEEE Transactions on Computers, 2016, 65, 548-561.	3.4	264
53	TCAM/CAM-QCA: (Ternary) Content Addressable Memory using Quantum-dot Cellular Automata. Microelectronics Journal, 2015, 46, 563-571.	2.0	25
54	Context transmission in personal IoT through an extension of the EPC Tag Data Standard. , 2015, , .		1

2

#	Article	IF	CITATIONS
55	Programmable Networks—From Software-Defined Radio to Software-Defined Networking. IEEE Communications Surveys and Tutorials, 2015, 17, 1102-1125.	39.4	91
56	A novel void node recovery paradigm for long-term underwater sensor networks. Ad Hoc Networks, 2015, 34, 144-156.	5.5	55
57	Robust Serial Nanocommunication With QCA. IEEE Nanotechnology Magazine, 2015, 14, 464-472.	2.0	42
58	eXtend collection tree protocol. , 2015, , .		9
59	Modeling and Analysis of Opportunistic Routing in Low Duty-Cycle Underwater Sensor Networks. , 2015, , .		22
60	Transmission power control-based opportunistic routing for wireless sensor networks. , 2014, , .		21
61	Network management through graphs in Software Defined Networks. , 2014, , .		10
62	GEDAR: Geographic and opportunistic routing protocol with Depth Adjustment for mobile underwater sensor networks. , 2014, , .		86
63	CodeDrip: Data Dissemination Protocol with Network Coding for Wireless Sensor Networks. Lecture Notes in Computer Science, 2014, , 34-49.	1.3	15
64	SewerSnort: A drifting sensor for in situ Wastewater Collection System gas monitoring. Ad Hoc Networks, 2013, 11, 1456-1471.	5.5	13
65	A genetic algorithm for the minimum cost localization problem in wireless sensor networks. , 2013, , .		14
66	Fundamental limits on end-to-end throughput of network coding in multi-rate and multicast wireless networks. Computer Networks, 2013, 57, 3267-3275.	5.1	23
67	NanoRouter: A Quantum-dot Cellular Automata Design. IEEE Journal on Selected Areas in Communications, 2013, 31, 825-834.	14.0	49
68	Data-rate maximization in wireless communication networks. , 2013, , .		0
69	DCR: Depth-Controlled Routing protocol for underwater sensor networks. , 2013, , .		46
70	Routing IPv6 over wireless networks with low-memory devices. , 2013, , .		1
71	HydroNode. , 2012, , .		5

72 Wireless multi-rate scheduling: From physical interference to disk graphs. , 2012, , .

5

#	Article	IF	CITATIONS
73	Performance and trade-offs of opportunistic routing in underwater networks. , 2012, , .		37
74	Mobile Robot Localization in Indoor Environments Using Multiple Wireless Technologies. , 2012, , .		9
75	HydroNode: A low cost, energy efficient, multi purpose node for underwater sensor networks. , 2012, ,		12
76	Selection of formal verification heuristics for parallel execution. International Journal on Software Tools for Technology Transfer, 2012, 14, 95-108.	1.9	0
77	3D MANETs: Link Probability, Node Degree, Network Coverage and applications. , 2011, , .		10
78	Phero-trail: a bio-inspired location service for mobile underwater sensor networks. IEEE Journal on Selected Areas in Communications, 2010, 28, 553-563.	14.0	61
79	Pressure Routing for Underwater Sensor Networks. , 2010, , .		157
80	AUV-Aided Localization for Underwater Sensor Networks. , 2007, , .		114
81	Performance of Network-Coding in Multi-Rate Wireless Environments for Multicast Applications. , 2007, , .		16
82	AUV-Aided Localization for Underwater Sensor Networks. , 2007, , .		54
83	Localization with Dive'N'Rise (DNR) beacons for underwater acoustic sensor networks. , 2007, , .		120
84	Scheduling nodes in wireless sensor networks: a Voronoi approach. , 2003, , .		49
85	Performance evaluation of AODV over CSMA and TSCH. Internet Technology Letters, 0, , e276.	1.9	1
86	Routing and Mobility Management in the Internet of Things. , 0, , .		0
87	On Braess's Paradox and Routing Algorithms. Internet Technology Letters, 0, , e334.	1.9	0