Johanna Clauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6726219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-Vitro Visualization of Thrombus Growth in Artificial Lungs Using Real-Time X-Ray Imaging: A Feasibility Study. Cardiovascular Engineering and Technology, 2022, 13, 318-330.	1.6	2
2	Comparison of Aspiration Catheters with Modified Standard Catheters for Treatment of Large Pulmonary Embolism Using an In-vitro Patho-Physiological Model. CardioVascular and Interventional Radiology, 2022, 45, 112-120.	2.0	3
3	The porcine abattoir blood model—Evaluation of platelet function for inâ€vitro hemocompatibility investigations. Artificial Organs, 2022, 46, 922-931.	1.9	0
4	Automation of hemocompatibility analysis using image segmentation and supervised classification. Engineering Applications of Artificial Intelligence, 2021, 97, 104009.	8.1	8
5	Hemocompatibility Evaluation of Biomaterials—The Crucial Impact of Analyzed Area. ACS Biomaterials Science and Engineering, 2021, 7, 553-561.	5.2	5
6	Hemolysis at low blood flow rates: in-vitro and in-silico evaluation of a centrifugal blood pump. Journal of Translational Medicine, 2021, 19, 2.	4.4	34
7	Validation of a Miniaturized Test Loop for the Assessment of Human Blood Damage by Continuous-Flow Left-Ventricular Assist Devices. Annals of Biomedical Engineering, 2021, , 1.	2.5	2
8	In vitro thrombogenicity testing of pulsatile mechanical circulatory support systems: Design and proofâ€ofâ€concept. Artificial Organs, 2021, 45, 1513-1521.	1.9	5
9	Miniaturized Test Loop for the Assessment of Blood Damage by Continuous-Flow Left-Ventricular Assist Devices. Annals of Biomedical Engineering, 2020, 48, 768-779.	2.5	9
10	In vitro study on the hemocompatibility of plasma electrolytic oxidation coatings on titanium substrates. Artificial Organs, 2020, 44, 419-427.	1.9	6
11	Ghost Cells for Mechanical Circulatory Support In Vitro Testing: A Novel Large Volume Production. Biotechnology Journal, 2020, 15, 1900239.	3.5	2
12	Comparison of Covered Laser-cut and Braided Respiratory Stents: From Bench to Pre-Clinical Testing. Annals of Biomedical Engineering, 2019, 47, 1738-1747.	2.5	4
13	Assessing the Thrombogenic Potential of Heart Valve Prostheses: An Approach for a Standardized In-Vitro Method. Cardiovascular Engineering and Technology, 2019, 10, 216-224.	1.6	7
14	A Novel Plasma-Based Fluid for Particle Image Velocimetry (PIV): In-Vitro Feasibility Study of Flow Diverter Effects in Aneurysm Model. Annals of Biomedical Engineering, 2018, 46, 841-848.	2.5	13
15	Preclinical testing of custom-made airway stents. , 2018, , .		0
16	Gefitinib/gefitinib microspheres loaded polyurethane constructs as drug-eluting stent coating. European Journal of Pharmaceutical Sciences, 2017, 103, 94-103.	4.0	11
17	Evaluation of platelet adhesion and activation on polymers: Round-robin study to assess inter-center variability. Colloids and Surfaces B: Biointerfaces, 2017, 158, 416-422.	5.0	23
18	PulmoStent: In Vitro to In Vivo Evaluation of a Tissue Engineered Endobronchial Stent. Annals of Biomedical Engineering, 2017, 45, 873-883.	2.5	13

JOHANNA CLAUSER

#	Article	IF	CITATIONS
19	Realâ€Time Visualization of Platelet Interaction With Micro Structured Surfaces. Artificial Organs, 2016, 40, 201-207.	1.9	5
20	Selection and fabrication of a non-woven polycarbonate urethane cover for a tissue engineered airway stent. International Journal of Pharmaceutics, 2016, 514, 255-262.	5.2	8
21	Regulating blood cell adhesion via surface modification of polyurethanes. , 2016, , 287-318.		1
22	Micro-structuring of polycarbonate-urethane surfaces in order to reduce platelet activation and adhesion. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 504-518.	3.5	12