
Paul Meredith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6725994/publications.pdf Version: 2024-02-01

Ρλιιι Μερεπιτή

#	Article	IF	CITATIONS
1	Quasi-Steady-State Measurement of Exciton Diffusion Lengths in Organic Semiconductors. Physical Review Applied, 2022, 17, .	1.5	12
2	Probing Charge Generation Efficiency in Thin-Film Solar Cells by Integral-Mode Transient Charge Extraction. ACS Photonics, 2022, 9, 1188-1195.	3.2	0
3	Scaling Considerations for Organic Photovoltaics for Indoor Applications. Solar Rrl, 2022, 6, .	3.1	11
4	Transient analysis of photomultiplication-type organic photodiodes. Applied Physics Reviews, 2022, 9, .	5.5	13
5	Role of Exciton Diffusion and Lifetime in Organic Solar Cells with a Low Energy Offset. Journal of Physical Chemistry Letters, 2022, 13, 4402-4409.	2.1	8
6	Quantifying the Excitonic Static Disorder in Organic Semiconductors. Advanced Functional Materials, 2022, 32, .	7.8	7
7	Integrated bioelectronic proton-gated logic elements utilizing nanoscale patterned Nafion. Materials Horizons, 2021, 8, 224-233.	6.4	9
8	A History and Perspective of Nonâ€Fullerene Electron Acceptors for Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003570.	10.2	323
9	Interfacial water morphology in hydrated melanin. Soft Matter, 2021, 17, 7940-7952.	1.2	6
10	Requirements for Making Thick Junctions of Organic Solar Cells based on Nonfullerene Acceptors. Solar Rrl, 2021, 5, 2100018.	3.1	16
11	Parameterization of Metallic Grids on Transparent Conductive Electrodes for the Scaling of Organic Solar Cells. Advanced Electronic Materials, 2021, 7, 2100192.	2.6	11
12	Direct Quantification of Quasi-Fermi-Level Splitting in Organic Semiconductor Devices. Physical Review Applied, 2021, 15, .	1.5	8
13	A universal Urbach rule for disordered organic semiconductors. Nature Communications, 2021, 12, 3988.	5.8	78
14	Direct observation of trap-assisted recombination in organic photovoltaic devices. Nature Communications, 2021, 12, 3603.	5.8	64
15	Melanin thin-films: a perspective on optical and electrical properties. Journal of Materials Chemistry C, 2021, 9, 8345-8358.	2.7	21
16	Organic solar cells with near-unity charge generation yield. Energy and Environmental Science, 2021, 14, 6484-6493.	15.6	20
17	On the Electroâ€Optics of Carbon Stack Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900221.	3.1	10
18	Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angewandte Chemie, 2020, 132, 11292-11301.	1.6	14

#	Article	IF	CITATIONS
19	Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angewandte Chemie - International Edition, 2020, 59, 11196-11205.	7.2	121
20	Sensitivity of Sub-Bandgap External Quantum Efficiency Measurements of Solar Cells under Electrical and Light Bias. ACS Photonics, 2020, 7, 256-264.	3.2	37
21	Determining Ultralow Absorption Coefficients of Organic Semiconductors from the Subâ€Bandgap Photovoltaic External Quantum Efficiency. Advanced Optical Materials, 2020, 8, 1901542.	3.6	36
22	Intrinsic Detectivity Limits of Organic Nearâ€Infrared Photodetectors. Advanced Materials, 2020, 32, e2003818.	11.1	95
23	Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37647-37656.	4.0	28
24	Nonfullerene Acceptors: A Renaissance in Organic Photovoltaics?. Advanced Energy Materials, 2020, 10, 2001788.	10.2	88
25	Engineering proton conductivity in melanin using metal doping. Journal of Materials Chemistry B, 2020, 8, 8050-8060.	2.9	27
26	Limitations of Charge Transfer State Parameterization Using Photovoltaic External Quantum Efficiency. Advanced Energy Materials, 2020, 10, 2001828.	10.2	29
27	Experimental Evidence Relating Charge-Transfer-State Kinetics and Strongly Reduced Bimolecular Recombination in Organic Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 10519-10525.	2.1	6
28	Metal Grid Structures for Enhancing the Stability and Performance of Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2020, 6, 2000732.	2.6	8
29	Charge-generating mid-gap trap states define the thermodynamic limit of organic photovoltaic devices. Nature Communications, 2020, 11, 5567.	5.8	63
30	Shedding Light on the Free Radical Nature of Sulfonated Melanins. Journal of Physical Chemistry B, 2020, 124, 10365-10373.	1.2	18
31	The Optical Constants of Solutionâ€Processed Semiconductors—New Challenges with Perovskites and Nonâ€Fullerene Acceptors. Advanced Optical Materials, 2020, 8, 2000319.	3.6	45
32	On the Question of the Need for a Builtâ€In Potential in Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000041.	1.9	79
33	Charge Carrier Transport and Generation via Trap-Mediated Optical Release in Organic Semiconductor Devices. Physical Review Letters, 2020, 124, 128001.	2.9	18
34	Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1â^'xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nature Energy, 2020, 5, 79-88.	19.8	412
35	Manipulating the Charge Transfer Absorption for Narrowband Light Detection in the Near-Infrared. Chemistry of Materials, 2019, 31, 9325-9330.	3.2	40
36	Measuring Energetic Disorder in Organic Semiconductors Using the Photogenerated Charge-Separation Efficiency. Journal of Physical Chemistry Letters, 2019, 10, 3863-3870.	2.1	29

Paul Meredith

#	Article	IF	CITATIONS
37	Theoretical Perspective on Transient Photovoltage and Charge Extraction Techniques. Journal of Physical Chemistry C, 2019, 123, 14261-14271.	1.5	49
38	The Role of Bulk and Interface Recombination in Highâ€Efficiency Lowâ€Dimensional Perovskite Solar Cells. Advanced Materials, 2019, 31, e1901090.	11.1	59
39	Cavity Enhanced Organic Photodiodes with Charge Collection Narrowing. Advanced Optical Materials, 2019, 7, 1801543.	3.6	38
40	Macroscale Biomolecular Electronics and Ionics. Advanced Materials, 2019, 31, e1802221.	11.1	80
41	Accurate characterization of next-generation thin-film photodetectors. Nature Photonics, 2019, 13, 1-4.	15.6	436
42	An all-solid-state biocompatible ion-to-electron transducer for bioelectronics. Materials Horizons, 2018, 5, 256-263.	6.4	81
43	The photoreactive free radical in eumelanin. Science Advances, 2018, 4, eaaq1293.	4.7	72
44	Recombination Losses Above and Below the Transport Percolation Threshold in Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1703339.	10.2	16
45	Scaling of next generation solution processed organic and perovskite solar cells. Nature Communications, 2018, 9, 5261.	5.8	56
46	Anomalous Exciton Quenching in Organic Semiconductors in the Low-Yield Limit. Journal of Physical Chemistry Letters, 2018, 9, 6144-6148.	2.1	6
47	Decoupling Ionic and Electronic Currents in Melanin. Advanced Functional Materials, 2018, 28, 1805514.	7.8	61
48	LED technology breaks performance barrier. Nature, 2018, 562, 197-198.	13.7	22
49	Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21681-21687.	4.0	89
50	Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nature Energy, 2018, 3, 847-854.	19.8	721
51	The Scaling Physics of Thin Film Organic Solar Cells. Materials and Energy, 2018, , 265-308.	2.5	0
52	Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2017, 2, .	23.3	992
53	A thiocarbonyl-containing small molecule for optoelectronics. RSC Advances, 2017, 7, 10316-10322.	1.7	10
54	A Triarylamine-Based Anode Modifier for Efficient Organohalide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 9096-9101.	4.0	10

#	Article	IF	CITATIONS
55	Considerations for Upscaling of Organohalide Perovskite Solar Cells. Advanced Optical Materials, 2017, 5, 1600819.	3.6	18
56	The structural impact of water sorption on device-quality melanin thin films. Soft Matter, 2017, 13, 3954-3965.	1.2	21
57	Electron Hopping Across Heminâ€Doped Serum Albumin Mats on Centimeterâ€Length Scales. Advanced Materials, 2017, 29, 1700810.	11.1	26
58	Engineering dielectric constants in organic semiconductors. Journal of Materials Chemistry C, 2017, 5, 3736-3747.	2.7	50
59	Host-Free Blue Phosphorescent Dendrimer Organic Light-Emitting Field-Effect Transistors and Equivalent Light-Emitting Diodes: A Comparative Study. ACS Photonics, 2017, 4, 754-760.	3.2	27
60	Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry. Nano Letters, 2017, 17, 827-833.	4.5	26
61	Effect of capping group on the properties of non-polymeric diketopyrrolopyrroles for solution-processed bulk heterojunction solar cells. Organic Electronics, 2017, 50, 339-346.	1.4	3
62	Electric Field and Mobility Dependent Firstâ€Order Recombination Losses in Organic Solar Cells. Advanced Energy Materials, 2017, 7, 1601379.	10.2	31
63	Assessing the sensing limits of fluorescent dendrimer thin films for the detection of explosive vapors. Sensors and Actuators B: Chemical, 2017, 239, 727-733.	4.0	14
64	On the unipolarity of charge transport in methanofullerene diodes. Npj Flexible Electronics, 2017, 1, .	5.1	17
65	An Hydrophilic Anode Interlayer for Solution Processed Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500420.	1.9	20
66	Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor–Acceptor Organic Solar Cell Blends. Journal of Physical Chemistry Letters, 2016, 7, 2640-2646.	2.1	14
67	Thiophene dendrimer-based low donor content solar cells. Applied Physics Letters, 2016, 109, .	1.5	14
68	AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes. Journal of Applied Physics, 2016, 119, 245501.	1.1	5
69	Longâ€Range Proton Conduction across Freeâ€Standing Serum Albumin Mats. Advanced Materials, 2016, 28, 2692-2698.	11.1	65
70	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Realâ€īime Sensing. ChemPhysChem, 2016, 17, 3350-3353.	1.0	16
71	Reduced Recombination in High Efficiency Molecular Nematic Liquid Crystalline: Fullerene Solar Cells. Advanced Energy Materials, 2016, 6, 1600939.	10.2	68
72	Efficient, monolithic large area organohalide perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 13830-13836.	5.2	47

#	Article	IF	CITATIONS
73	Near infrared photodetectors based on subâ€gap absorption in organohalide perovskite single crystals. Laser and Photonics Reviews, 2016, 10, 1047-1053.	4.4	64
74	Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing. ChemPhysChem, 2016, 17, 3345-3345.	1.0	0
75	Megawattâ€scale solar variability study: an experience from a 1.2ÂMWp photovoltaic system in Australia over three years. IET Renewable Power Generation, 2016, 10, 1229-1236.	1.7	27
76	Slower carriers limit charge generation in organic semiconductor light-harvesting systems. Nature Communications, 2016, 7, 11944.	5.8	65
77	Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor. Chemical Reviews, 2016, 116, 12920-12955.	23.0	197
78	Organic Photodiodes: The Future of Full Color Detection and Image Sensing. Advanced Materials, 2016, 28, 4766-4802.	11.1	599
79	Organohalide Perovskites for Solar Energy Conversion. Accounts of Chemical Research, 2016, 49, 545-553.	7.6	135
80	An overview of the Australian Centre for Advanced Photovoltaics and the Australia-US Institute for Advanced Photovoltaics. Materials Research Society Symposia Proceedings, 2015, 1771, 33-44.	0.1	1
81	Melanins and melanogenesis: from pigment cells toÂhuman health and technological applications. Pigment Cell and Melanoma Research, 2015, 28, 520-544.	1.5	347
82	Bulk heterojunction thickness uniformity – a limiting factor in large area organic solar cells?. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2246-2254.	0.8	17
83	Pathway to high throughput, low cost indium-free transparent electrodes. Journal of Materials Chemistry A, 2015, 3, 13892-13899.	5.2	15
84	Heavy Water as a Probe of the Free Radical Nature and Electrical Conductivity of Melanin. Journal of Physical Chemistry B, 2015, 119, 14994-15000.	1.2	52
85	Diffusion of nitroaromatic vapours into fluorescent dendrimer films for explosives detection. Sensors and Actuators B: Chemical, 2015, 210, 550-557.	4.0	24
86	Efficient and bright polymer light emitting field effect transistors. Organic Electronics, 2015, 17, 371-376.	1.4	25
87	Low Noise, IRâ€Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging. Advanced Materials, 2015, 27, 2060-2064.	11.1	271
88	Photodiodes: High-Performance, Solution-Processed Non-polymeric Organic Photodiodes (Advanced) Tj ETQq0	0 0 rgBT /C	Overlock 10 Tr
89	Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nature Communications, 2015, 6, 6343.	5.8	406

⁹⁰Charge transport and recombination in heterostructure organic light emitting transistors. Organic
Electronics, 2015, 25, 37-43.1.48

#	Article	IF	CITATIONS
91	Dielectric constant enhancement of non-fullerene acceptors via side-chain modification. Chemical Communications, 2015, 51, 14115-14118.	2.2	49
92	Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors. Scientific Reports, 2015, 5, 8818.	1.6	35
93	Photocarrier drift distance in organic solar cells and photodetectors. Scientific Reports, 2015, 5, 9949.	1.6	81
94	Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. Science and Technology of Advanced Materials, 2015, 16, 025002.	2.8	24
95	Room-temperature tilted-target sputtering deposition of highly transparent and low sheet resistance Al doped ZnO electrodes. Journal of Materials Chemistry C, 2015, 3, 5322-5331.	2.7	15
96	Simultaneous enhancement of charge generation quantum yield and carrier transport in organic solar cells. Journal of Materials Chemistry C, 2015, 3, 10799-10812.	2.7	25
97	Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films. Nature Communications, 2015, 6, 8240.	5.8	75
98	Solution-processed non-polymeric organic photodiodes. Proceedings of SPIE, 2015, , .	0.8	0
99	Molecular versus exciton diffusion in fluorescence-based explosive vapour sensors. Chemical Communications, 2015, 51, 17406-17409.	2.2	15
100	Quantitative real time sensing reveals enhanced sensitivity of polar dendrimer thin films for plastic explosive taggants. Journal of Materials Chemistry C, 2015, 3, 9412-9424.	2.7	2
101	Filterless narrowband visible photodetectors. Nature Photonics, 2015, 9, 687-694.	15.6	445
102	Electro-Optics of Conventional and Inverted Thick Junction Organic Solar Cells. ACS Photonics, 2015, 2, 1745-1754.	3.2	40
103	Charge Transport without Recombination in Organic Solar Cells and Photodiodes. Journal of Physical Chemistry C, 2015, 119, 26866-26874.	1.5	28
104	Tuning the Optoelectronic Properties of Nonfullerene Electron Acceptors. ChemPhysChem, 2015, 16, 1295-1304.	1.0	12
105	Electro-optics of perovskite solar cells. Nature Photonics, 2015, 9, 106-112.	15.6	1,485
106	Optimized multilayer indium-free electrodes for organic photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 348-355.	0.8	8
107	Time-independent charge carrier mobility in a model polymer:fullerene organic solar cell. Organic Electronics, 2015, 16, 205-211.	1.4	11
108	Efficient, Large Area, and Thick Junction Polymer Solar Cells with Balanced Mobilities and Low Defect Densities. Advanced Energy Materials, 2015, 5, 1401221.	10.2	80

#	Article	IF	CITATIONS
109	Highâ€Performance, Solutionâ€Processed Nonâ€polymeric Organic Photodiodes. Advanced Optical Materials, 2015, 3, 50-56.	3.6	43
110	Balanced Carrier Mobilities: Not a Necessary Condition for Highâ€Efficiency Thin Organic Solar Cells as Determined by MISâ€CELIV. Advanced Energy Materials, 2014, 4, 1300954.	10.2	129
111	Molecular weight dependent bimolecular recombination in organic solar cells. Journal of Chemical Physics, 2014, 141, 054903.	1.2	21
112	Pentacene/K12 solar cells formed by organic vapor phase deposition. Journal of Photonics for Energy, 2014, 4, 043092.	0.8	0
113	Determination of Fullerene Scattering Length Density: A Critical Parameter for Understanding the Fullerene Distribution in Bulk Heterojunction Organic Photovoltaic Devices. Langmuir, 2014, 30, 1410-1415.	1.6	19
114	Solution structure: defining polymer film morphology and optoelectronic device performance. Journal of Materials Chemistry C, 2014, 2, 71-77.	2.7	21
115	Dynamics of Charge Generation and Transport in Polymer-Fullerene Blends Elucidated Using a PhotoFET Architecture. ACS Photonics, 2014, 1, 114-120.	3.2	16
116	Advantage of suppressed non-Langevin recombination in low mobility organic solar cells. Applied Physics Letters, 2014, 105, .	1.5	36
117	Spectral Dependence of the Internal Quantum Efficiency of Organic Solar Cells: Effect of Charge Generation Pathways. Journal of the American Chemical Society, 2014, 136, 11465-11472.	6.6	83
118	Time-Resolved Neutron Reflectometry and Photovoltaic Device Studies on Sequentially Deposited PCDTBT-Fullerene Layers. Langmuir, 2014, 30, 11474-11484.	1.6	35
119	Improved stability of non-ITO stacked electrodes for large area flexible organic solar cells. Solar Energy Materials and Solar Cells, 2014, 130, 182-190.	3.0	20
120	Thick junction broadband organic photodiodes. Laser and Photonics Reviews, 2014, 8, 924-932.	4.4	212
121	Worldwide outdoor round robin study of organic photovoltaic devices and modules. Solar Energy Materials and Solar Cells, 2014, 130, 281-290.	3.0	23
122	High-Mobility, Heterostructure Light-Emitting Transistors and Complementary Inverters. ACS Photonics, 2014, 1, 954-959.	3.2	22
123	Narrow band green organic photodiodes for imaging. Organic Electronics, 2014, 15, 2903-2911.	1.4	118
124	Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations. ACS Photonics, 2014, 1, 173-181.	3.2	137
125	Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors. ChemPhysChem, 2014, 15, 1539-1549.	1.0	27
126	Impact of Acceptor Crystallinity on the Photophysics of Nonfullerene Blends for Organic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 13460-13466.	1.5	11

#	Article	IF	CITATIONS
127	The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells. Scientific Reports, 2014, 4, 5695.	1.6	58
128	Measuring internal quantum efficiency to demonstrate hot exciton dissociation. Nature Materials, 2013, 12, 593-593.	13.3	37
129	Three-dimensional carbazole-based dendrimers: model structures for studying charge transport in organic semiconductor films. Polymer Chemistry, 2013, 4, 916-925.	1.9	22
130	Detection of explosive analytes using a dendrimer-based field-effect transistor. Organic Electronics, 2013, 14, 1255-1261.	1.4	5
131	Melanins and melanogenesis: methods, standards, protocols. Pigment Cell and Melanoma Research, 2013, 26, 616-633.	1.5	365
132	Analysis of yearlong performance of differently tilted photovoltaic systems in Brisbane, Australia. Energy Conversion and Management, 2013, 74, 102-108.	4.4	47
133	Correlation of diffusion and performance in sequentially processed P3HT/PCBM heterojunction films by time-resolved neutron reflectometry. Journal of Materials Chemistry C, 2013, 1, 2593.	2.7	33
134	High-Generation Dendrimers with Excimer-like Photoluminescence for the Detection of Explosives. Journal of Physical Chemistry C, 2013, 117, 5328-5337.	1.5	38
135	Unlocking the full potential of light emitting field-effect transistors by engineering charge injection layers. Organic Electronics, 2013, 14, 2953-2961.	1.4	25
136	Dopingâ€Induced Screening of the Builtâ€inâ€Field in Organic Solar Cells: Effect on Charge Transport and Recombination. Advanced Energy Materials, 2013, 3, 321-327.	10.2	54
137	Electronic and optoelectronic materials and devices inspired by nature. Reports on Progress in Physics, 2013, 76, 034501.	8.1	174
138	Identifying the optimum composition in organic solar cells comprising non-fullerene electron acceptors. Journal of Materials Chemistry A, 2013, 1, 5989.	5.2	24
139	Hydration-Controlled X-Band EPR Spectroscopy: A Tool for Unravelling the Complexities of the Solid-State Free Radical in Eumelanin. Journal of Physical Chemistry B, 2013, 117, 4965-4972.	1.2	84
140	A Narrow Optical Gap Small Molecule Acceptor for Organic Solar Cells. Advanced Energy Materials, 2013, 3, 54-59.	10.2	107
141	Controlling Hierarchy in Solutionâ€processed Polymer Solar Cells Based on Crosslinked P3HT. Advanced Energy Materials, 2013, 3, 105-112.	10.2	58
142	Spectral response tuning using an optical spacer in broad-band organic solar cells. Applied Physics Letters, 2013, 102, 013302.	1.5	8
143	The nature and role of trap states in a dendrimer-based organic field-effect transistor explosive sensor. Applied Physics Letters, 2013, 102, 243301.	1.5	3
144	Channel II photocurrent quantification in narrow optical gap polymer-fullerene solar cells with complimentary acceptor absorption. Applied Physics Letters, 2013, 102, 223302.	1.5	15

#	Article	IF	CITATIONS
145	Simultaneous Enhancement of Brightness, Efficiency, and Switching in RGB Organic Light Emitting Transistors. Advanced Materials, 2013, 25, 6213-6218.	11.1	77
146	Structured-gate organic field-effect transistors. Journal Physics D: Applied Physics, 2012, 45, 225105.	1.3	8
147	Role of semiconductivity and ion transport in the electrical conduction of melanin. Proceedings of the United States of America, 2012, 109, 8943-8947.	3.3	305
148	On the origin of electrical conductivity in the bio-electronic material melanin. Applied Physics Letters, 2012, 100, .	1.5	76
149	A new diketopyrrolopyrrole-based co-polymer for ambipolar field-effect transistors and solar cells. Organic Electronics, 2012, 13, 1981-1988.	1.4	21
150	Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cells. Applied Physics Letters, 2012, 101, 083306.	1.5	42
151	Large area monolithic organic solar cells. Proceedings of SPIE, 2012, , .	0.8	1
152	Kinetics of charge transfer processes in organic solar cells: Implications for the design of acceptor molecules. Organic Electronics, 2012, 13, 2538-2545.	1.4	11
153	A flexible n-type organic semiconductor for optoelectronics. Journal of Materials Chemistry, 2012, 22, 1800-1806.	6.7	28
154	Fluorescent carbazole dendrimers for the detection of nitroaliphatic taggants and accelerants. Journal of Materials Chemistry, 2012, 22, 12507.	6.7	34
155	Efficient, Large Area ITOâ€andâ€PEDOTâ€free Organic Solar Cell Subâ€modules. Advanced Materials, 2012, 24, 2572-2577.	11.1	148
156	Factors Influencing the Efficiency of Current Collection in Large Area, Monolithic Organic Solar Cells. Advanced Energy Materials, 2012, 2, 1338-1342.	10.2	27
157	Nanostructured, Active Organic–Metal Junctions for Highly Efficient Charge Generation and Extraction in Polymerâ€Fullerene Solar Cells. Advanced Materials, 2012, 24, 1055-1061.	11.1	37
158	Solid State Dendrimer Sensors: Effect of Dendrimer Dimensionality on Detection and Sequestration of 2,4-Dinitrotoluene. Journal of Physical Chemistry C, 2011, 115, 18366-18371.	1.5	28
159	Synthesis and Self-Assembly of Donor–Acceptor–Donor Based Oligothiophenes and Their Optoelectronic Properties. Journal of Physical Chemistry C, 2011, 115, 14369-14376.	1.5	31
160	Explosive Sensing with Fluorescent Dendrimers: The Role of Collisional Quenching. Chemistry of Materials, 2011, 23, 789-794.	3.2	134
161	A dendronised polymer for bulk heterojunction solar cells. Polymer Chemistry, 2011, 2, 2668.	1.9	17
162	Fluorescent carbazole dendrimers for the detection of explosives. Polymer Chemistry, 2011, 2, 2360.	1.9	84

#	Article	IF	CITATIONS
163	A solution processable fluorene-benzothiadiazole small molecule for n-type organic field-effect transistors. Applied Physics Letters, 2011, 98, 153301.	1.5	19
164	Extraction of photogenerated charge carriers by linearly increasing voltage in the case of Langevin recombination. Physical Review B, 2011, 84, .	1.1	47
165	Morphology of Allâ€Solutionâ€Processed "Bilayer―Organic Solar Cells. Advanced Materials, 2011, 23, 766-770.	11.1	228
166	A Small Molecule Nonâ€fullerene Electron Acceptor for Organic Solar Cells. Advanced Energy Materials, 2011, 1, 73-81.	10.2	147
167	Plasmonic Back Reflectors: A Small Molecule Non-fullerene Electron Acceptor for Organic Solar Cells. Advanced Energy Materials, 2011, 1, 72-72.	10.2	0
168	A Tunable Metal–Organic Resistance Thermometer. ChemPhysChem, 2011, 12, 116-121.	1.0	0
169	Vertical morphology in solution-processed organic solar cells. , 2011, , .		0
170	Nano-structured organic-metal interface for high efficiency organic solar cells. , 2011, , .		0
171	Morphology dependent electron transport in an n-type electron accepting small molecule for solar cell applications. Applied Physics Letters, 2011, 98, 083301.	1.5	7
172	Charge transport properties of carbazole dendrimers in organic field-effect transistors. Proceedings of SPIE, 2011, , .	0.8	5
173	Fluoride Sensing by Catecholâ€Based Ï€â€Electron Systems. ChemPhysChem, 2010, 11, 3517-3521.	1.0	8
174	Competition between superconductivity and weak localization in metal-mixed ion-implanted polymers. Physical Review B, 2010, 81, .	1.1	3
175	High quality shadow masks for top contact organic field effect transistors using deep reactive ion etching. Journal of Micromechanics and Microengineering, 2010, 20, 075037.	1.5	17
176	New Type II Catechol-Thiophene Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 17964-17974.	1.5	80
177	The effect of dendronisation of arylamine centred chromophores on field effect transistor performance. Polymer Chemistry, 2010, 1, 1117.	1.9	13
178	Effect of Dimensionality in Dendrimeric and Polymeric Fluorescent Materials for Detecting Explosives. Macromolecules, 2010, 43, 10253-10261.	2.2	70
179	Facile Iterative Synthesis of Biphenyl Dendrons with a Functionalized Focus. Organic Letters, 2010, 12, 4338-4340.	2.4	10
180	Gaseous Adsorption in Melanins: Hydrophilic Biomacromolecules with High Electrical Conductivities. Langmuir, 2010, 26, 412-416.	1.6	50

#	Article	IF	CITATIONS
181	Preparation of metal mixed plastic superconductors: Electrical properties of tin-antimony thin films on plastic substrates. Journal of Applied Physics, 2009, 105, 093909.	1.1	2
182	Sensing nitroaromatic analytes with a bifluorene-cored dendrimer. , 2009, , .		16
183	Dendrimers for photon harvesting in organic and organic/inorganic hybrid solar cells. Proceedings of SPIE, 2009, , .	0.8	0
184	Chemical and Structural Diversity in Eumelanins: Unexplored Bioâ€Optoelectronic Materials. Angewandte Chemie - International Edition, 2009, 48, 3914-3921.	7.2	517
185	Ruthenium complex-cored dendrimers: Shedding light on efficiency trade-offs in dye-sensitised solar cells. Organic Electronics, 2009, 10, 1356-1363.	1.4	34
186	The supramolecular structure of melanin. Soft Matter, 2009, 5, 3754.	1.2	257
187	Solid-State Dendrimer Sensors: Probing the Diffusion of an Explosive Analogue Using Neutron Reflectometry. Langmuir, 2009, 25, 12800-12805.	1.6	68
188	Enhancing the Properties of Ruthenium Dyes by Dendronization. Chemistry of Materials, 2009, 21, 3315-3324.	3.2	16
189	Deviceâ€Quality Electrically Conducting Melanin Thin Films. Advanced Materials, 2008, 20, 3539-3542.	11.1	182
190	The vibrational spectrum of indole: An inelastic neutron scattering study. Chemical Physics, 2008, 345, 230-238.	0.9	16
191	Effect of Dimerization on Vibrational Spectra of Eumelanin Precursors ^{â€} . Photochemistry and Photobiology, 2008, 84, 613-619.	1.3	15
192	Solvochromic Effects in Model Eumelanin Compounds ^{â€} . Photochemistry and Photobiology, 2008, 84, 620-626.	1.3	9
193	Synthesis and Polymerization Studies of Organic-Soluble Eumelanins. Photochemistry and Photobiology, 2008, 84, 632-638.	1.3	27
194	Determination of thermal and optical properties of ion implanted polyetheretherketone films by photothermal spectroscopies. Journal of Applied Physics, 2007, 101, 054506.	1.1	3
195	Transition dipole strength of eumelanin. Physical Review E, 2007, 76, 021915.	0.8	21
196	Convergent Proton-Transfer Photocycles Violate Mirror-Image Symmetry in a Key Melanin Monomer. Journal of the American Chemical Society, 2007, 129, 6672-6673.	6.6	51
197	Timeâ€Resolved and Steadyâ€&tate Fluorescence Spectroscopy of Eumelanin and Indolic Polymers. Photochemistry and Photobiology, 2007, 83, 1449-1454.	1.3	15
198	Towards structure–property–function relationships for eumelanin. Soft Matter, 2006, 2, 37-44.	1.2	263

#	Article	IF	CITATIONS
199	Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance. Biophysical Journal, 2006, 90, 743-752.	0.2	230
200	Quantitative Scattering of Melanin Solutions. Biophysical Journal, 2006, 90, 4137-4144.	0.2	81
201	Radiative Relaxation in Synthetic Pheomelanin. Journal of Physical Chemistry B, 2006, 110, 13985-13990.	1.2	32
202	The physical and chemical properties of eumelanin. Pigment Cell & Melanoma Research, 2006, 19, 572-594.	4.0	828
203	Study of optical properties of electropolymerized melanin films by photopyroelectric spectroscopy. European Biophysics Journal, 2006, 35, 190-195.	1.2	36
204	Effect of conducting polymer molecular weight on nanocrystal growth size for photovoltaic applications. , 2006, , .		1
205	Superconductivity in metal-mixed ion-implanted polymer films. Applied Physics Letters, 2006, 89, 152503.	1.5	6
206	Broadband Photon-harvesting Biomolecules for Photovoltaics. , 2006, , 35-65.		3
207	Quantitative photoluminescence of broad band absorbing melanins: a procedure to correct for inner filter and re-absorption effects. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2153-2160.	2.0	36
208	Growing semiconductor nanocrystals directly in a conducting polymer. Materials Letters, 2005, 59, 3033-3036.	1.3	20
209	Electrochemical synthesis of melanin free-standing films. Polymer, 2005, 46, 11505-11509.	1.8	36
210	2-Methoxy-6-methyl-3-nitro-4-(2-nitroprop-1-enyl)phenyl acetate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o1709-o1711.	0.2	0
211	Optical scatter imaging using digital Fourier microscopy. Journal Physics D: Applied Physics, 2005, 38, 3590-3598.	1.3	4
212	Determination of thermal and optical parameters of melanins by photopyroelectric spectroscopy. Applied Physics Letters, 2005, 87, 061920.	1.5	20
213	A quantum yield map for synthetic eumelanin. Journal of Chemical Physics, 2005, 123, 194901.	1.2	58
214	Lead sulfide nanocrystal: conducting polymer solar cells. Journal Physics D: Applied Physics, 2005, 38, 2006-2012.	1.3	147
215	Immobilisation of electroactive macrocyclic complexes within titania films. Dalton Transactions, 2005, , 2508.	1.6	12
216	Quantitative Fluorescence Excitation Spectra of Synthetic Eumelanin. Journal of Physical Chemistry B, 2005, 109, 20629-20635.	1.2	55

Paul Meredith

#	Article	IF	CITATIONS
217	A New Approach to the Synthesis of Nanocrystal Conjugated Polymer Composites. Synthetic Metals, 2005, 154, 57-60.	2.1	6
218	Lead sulfide nanocrystal/conducting polymer solar cells. , 2005, 6038, 276.		3
219	Energy Transfer Dynamics of Nanocrystalâ^'Polymer Composites. Journal of Physical Chemistry B, 2005, 109, 9001-9005.	1.2	58
220	Carrier transport in PbS nanocrystal conducting polymer composites. Applied Physics Letters, 2005, 87, 253109.	1.5	45
221	A Two-Step Sol–Gel Method for Synthesis of Nanoporous TiO ₂ . Journal of Nanoscience and Nanotechnology, 2004, 4, 270-274.	0.9	11
222	Tricalcium aluminate hydration: Microstructural observations by in-situ electron microscopy. Journal of Materials Science, 2004, 39, 997-1005.	1.7	58
223	Formation of mesostructured titania thin films using isopropoxide precursors. Current Applied Physics, 2004, 4, 160-162.	1.1	8
224	A PbS quantum-cube: conducting polymer composite for photovoltaic applications. Current Applied Physics, 2004, 4, 320-322.	1.1	37
225	Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 245-249.	2.0	73
226	Holographic digital Fourier microscopy for selective imaging of biological tissue. International Journal of Imaging Systems and Technology, 2004, 14, 253-258.	2.7	2
227	Postsynthesis Stabilization of Free-standing Mesoporous Silica Films. Langmuir, 2004, 20, 2908-2914.	1.6	13
228	Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells (DSSCs). Journal of Materials Chemistry, 2004, 14, 2917.	6.7	72
229	A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers. Journal of Chemical Physics, 2004, 120, 8608-8615.	1.2	147
230	Tailored conductivity in ion implanted polyetheretherketone. Synthetic Metals, 2004, 145, 183-190.	2.1	21
231	A new approach to the synthesis of conjugated polymer–nanocrystal composites for heterojunction optoelectronics. Chemical Communications, 2004, , 2334-2335.	2.2	53
232	Radiative Relaxation Quantum Yields for Synthetic Eumelanin¶. Photochemistry and Photobiology, 2004, 79, 211.	1.3	176
233	Radiative Relaxation Quantum Yields for Synthetic Eumelanin [¶] . Photochemistry and Photobiology, 2004, 79, 211-216.	1.3	173
234	Mesostructured Dye-Doped Titanium Dioxide for Micro-Optoelectronic Applications. ChemPhysChem, 2003, 4, 595-603.	1.0	85

0

#	Article	IF	CITATIONS
235	Dimer-to-Monomer Transformation of Rhodamine 6G in Aqueous PEOâ^'PPOâ^'PEO Block Copolymer Solutions. Macromolecules, 2002, 35, 2063-2070.	2.2	49
236	Structural Studies of Concentrated Dispersions. , 1998, , 41-50.		1
237	Film Formation of Latices. , 1998, , 51-59.		0
238	An improved model for gaseous amplification in the environmental SEM. Journal of Microscopy, 1997, 187, 143-157.	0.8	93
239	Film Formation of Acrylic Latices with Varying Concentrations of Non-Film-Forming Latex Particles. Langmuir, 1996, 12, 3793-3801.	1.6	85
240	Study of â€~wet' polymer latex systems in environmental scanning electron microscopy: some imaging considerations. Journal of Microscopy, 1996, 181, 23-35.	0.8	44
241	Freeze-Drying: In Situ Observations Using Cryoenvironmental Scanning Electron Microscopy and Differential Scanning Calorimetry. Journal of Pharmaceutical Sciences, 1996, 85, 631-637.	1.6	29
242	Electronâ€gas interactions in the environmental scanning electron microscopes gaseous detector. Scanning, 1996, 18, 467-473.	0.7	42
243	A Fiber Optic Probe for Gas Total Temperature Measurement in Turbomachinery. Journal of Turbomachinery, 1995, 117, 635-641.	0.9	5
244	Pre-induction and induction hydration of tricalcium silicate: an environmental scanning electron microscopy study. Journal of Materials Science, 1995, 30, 1921-1930.	1.7	40
245	Kinetics of Film Formation in Acrylic Latices Studied with Multiple-Angle-of-Incidence Ellipsometry and Environmental SEM. Macromolecules, 1995, 28, 2673-2682.	2.2	172
246	Picosecond-continuum measurements of ultrafast dynamic refractive nonlinearities in a ZnSe interference filter. Optics Communications, 1994, 111, 111-115.	1.0	0
247	A Fibre Optic Probe for Gas Total Temperature Measurement in Turbomachinery. , 1994, , .		1
248	Water anomaly in capillary liquid absorption by cement-based materials. Journal of Materials Science Letters, 1993, 14, 1178-1181.	0.5	89
249	Improved method for determining the optical constants of thin films and its application to molecular-beam-deposited polycrystalline layers. Applied Optics, 1993, 32, 5619.	2.1	17
250	Submilliwatt optical bistability in a coated InGaAs/InP multiquantum well waveguide Fabry–Perot cavity. Electronics Letters, 1993, 29, 1537.	0.5	5
251	Near-unity Charge Generation Yield towards high performance thick-junction Organic Solar Cells. , 0, , .		0

252 Direct quantification of quasi-Fermi level splitting in organic semiconductor devices. , 0, , .

#	Article	IF	CITATIONS
253	Direct Observation of Trap-assisted Recombination in Organic Photovoltaic Devices. , 0, , .		0
254	Commentary on the Scaling Physics of Printable Organic and Perovskite Thin Film Solar Cells. , 0, , .		0
255	Electro-optical Considerations for Thin Film Solar Cells and Photodetectors. , 0, , .		0
256	Trap-mediated Charge Photogeneration, Transport and Recombination in Organic Solar Cells: Limitations Set by Domain Purity. , 0, , .		0
257	A Theoretical Perspective on Transient Photovoltage and Charge Extraction Techniques. , 0, , .		0
258	Quantifying Trap-assisted Recombination in Thin Film Solar Cells from Intensity Dependent Photocurrent Measurements. , 0, , .		0
259	Do We Need to Re-write the Electro-Optical Rule Book for Non-Fullerene Electron Acceptors?. , 0, , .		0
260	Trap-mediated Charge Photogeneration, Transport and Recombination in Organic Solar Cells: Limitations Set by Domain Purity. , 0, , .		0
261	A Theoretical Perspective on Transient Photovoltage and Charge Extraction Techniques. , 0, , .		0
262	Quantifying Trap-assisted Recombination in Thin Film Solar Cells from Intensity Dependent Photocurrent Measurements. , 0, , .		0
263	Probing charge generation efficiency in thin-film solar cells by low-intensity integral time-of-flight. , 0, , .		0
264	Measuring exciton diffusion lengths in organic semiconductors. , 0, , .		0