
Anne-Marie Cleton-Jansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6725434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of mesenchymal stem cells in bone cancer. , 2022, , 145-156.		Ο
2	Zebrafish models for studying bone tumors. , 2022, , 55-64.		0
3	A murine mesenchymal stem cell model for initiating events in osteosarcomagenesis points to CDK4/CDK6 inhibition as a therapeutic target. Laboratory Investigation, 2022, 102, 391-400.	3.7	5
4	Transformed Canine and Murine Mesenchymal Stem Cells as a Model for Sarcoma with Complex Genomics. Cancers, 2021, 13, 1126.	3.7	5
5	Expanding the Spectrum of EWSR1-NFATC2-rearranged Benign Tumors. American Journal of Surgical Pathology, 2021, 45, 1669-1681.	3.7	24
6	Targeting the NAD Salvage Synthesis Pathway as a Novel Therapeutic Strategy for Osteosarcomas with Low NAPRT Expression. International Journal of Molecular Sciences, 2021, 22, 6273.	4.1	10
7	<i>NTRK</i> fusions are extremely rare in bone tumours. Histopathology, 2021, 79, 880-885.	2.9	7
8	A subset of epithelioid and spindle cell rhabdomyosarcomas is associated with TFCP2 fusions and common ALK upregulation. Modern Pathology, 2020, 33, 404-419.	5.5	80
9	What's new in bone forming tumours of the skeleton?. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 476, 147-157.	2.8	33
10	Optimizing Mutation and Fusion Detection in NSCLC by Sequential DNA and RNA Sequencing. Journal of Thoracic Oncology, 2020, 15, 1000-1014.	1.1	68
11	Radiotherapy resistance in chondrosarcoma cells; a possible correlation with alterations in cell cycle related genes. Clinical Sarcoma Research, 2019, 9, 9.	2.3	34
12	A screening-based approach identifies cell cycle regulators AURKA, CHK1 and PLK1 as targetable regulators of chondrosarcoma cell survival. Journal of Bone Oncology, 2019, 19, 100268.	2.4	6
13	Molecular Pathology of Bone Tumors. Journal of Molecular Diagnostics, 2019, 21, 171-182.	2.8	16
14	Soft tissue aneurysmal bone cyst: six new cases with imaging details, molecular pathology, and review of the literature. Skeletal Radiology, 2019, 48, 1059-1067.	2.0	33
15	Targeting glutaminolysis in chondrosarcoma in context of the IDH1/2 mutation. British Journal of Cancer, 2018, 118, 1074-1083.	6.4	37
16	Increased infiltration of M2-macrophages, T-cells and PD-L1 expression in high grade leiomyosarcomas supports immunotherapeutic strategies. OncoImmunology, 2018, 7, e1386828.	4.6	36
17	Increased Risk of Breast Cancer at a Young Age in Women with Fibrous Dysplasia. Journal of Bone and Mineral Research, 2018, 33, 84-90.	2.8	39
18	IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits inÂvivo the growth of a subcutaneous human osteosarcoma xenograft. Cancer Letters, 2018, 414, 1-15.	7.2	72

#	Article	IF	CITATIONS
19	Immune checkpoint inhibitors in sarcomas: in quest of predictive biomarkers. Laboratory Investigation, 2018, 98, 41-50.	3.7	30
20	Low-grade central fibroblastic osteosarcoma may be differentiated from its mimicker desmoplastic fibroma by genetic analysis. Clinical Sarcoma Research, 2018, 8, 16.	2.3	7
21	Therapy-induced enrichment of cancer stem-like cells in solid human tumors: Where do we stand?. Pharmacological Research, 2018, 137, 193-204.	7.1	55
22	Report from the 4th European Bone Sarcoma Networking meeting: focus on osteosarcoma. Clinical Sarcoma Research, 2018, 8, .	2.3	3
23	Molecular Analysis of Gene Fusions in Bone and Soft Tissue Tumors by Anchored Multiplex PCR–Based Targeted Next-Generation Sequencing. Journal of Molecular Diagnostics, 2018, 20, 653-663.	2.8	85
24	Blocking Tumor-Educated MSC Paracrine Activity Halts Osteosarcoma Progression. Clinical Cancer Research, 2017, 23, 3721-3733.	7.0	150
25	In vitro studies of osteosarcoma: A researcher's perspectiveÂof quantity and quality. Journal of Bone Oncology, 2017, 7, 29-31.	2.4	5
26	NAD Synthesis Pathway Interference Is a Viable Therapeutic Strategy for Chondrosarcoma. Molecular Cancer Research, 2017, 15, 1714-1721.	3.4	36
27	IDH1 or -2 mutations do not predict outcome and do not cause loss of 5-hydroxymethylcytosine or altered histone modifications in central chondrosarcomas. Clinical Sarcoma Research, 2017, 7, 8.	2.3	50
28	Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy. Cancer Immunology, Immunotherapy, 2017, 66, 119-128.	4.2	89
29	Tissue factor associates with survival and regulates tumour progression in osteosarcoma. Thrombosis and Haemostasis, 2016, 115, 1025-1033.	3.4	23
30	Osteosarcoma Stem Cells Have Active Wnt/β atenin and Overexpress SOX2 and KLF4. Journal of Cellular Physiology, 2016, 231, 876-886.	4.1	62
31	No preclinical rationale for IGF1R directed therapy in chondrosarcoma of bone. BMC Cancer, 2016, 16, 475.	2.6	7
32	Inhibition of Bcl-2 family members sensitises soft tissue leiomyosarcomas to chemotherapy. British Journal of Cancer, 2016, 114, 1219-1226.	6.4	13
33	Inhibition of Bcl-2 family members sensitizes mesenchymal chondrosarcoma to conventional chemotherapy: report on a novel mesenchymal chondrosarcoma cell line. Laboratory Investigation, 2016, 96, 1128-1137.	3.7	31
34	Analysis of PD-L1, T-cell infiltrate and HLA expression in chondrosarcoma indicates potential for response to immunotherapy specifically in the dedifferentiated subtype. Modern Pathology, 2016, 29, 1028-1037.	5.5	84
35	Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/β-catenin signaling. Cancer Letters, 2016, 370, 286-295.	7.2	94
36	Mesenchymal stromal cells of osteosarcoma patients do not show evidence of neoplastic changes during long-term culture. Clinical Sarcoma Research, 2015, 5, 16.	2.3	8

#	Article	IF	CITATIONS
37	Avenâ€mediated checkpoint kinase control regulates proliferation and resistance to chemotherapy in conventional osteosarcoma. Journal of Pathology, 2015, 236, 348-359.	4.5	38
38	Mutation Analysis of H3F3A and H3F3B as a Diagnostic Tool for Giant Cell Tumor of Bone and Chondroblastoma. American Journal of Surgical Pathology, 2015, 39, 1576-1583.	3.7	174
39	Role of mesenchymal stem cells in bone cancer; initiation, propagation and metastasis. , 2015, , 73-82.		1
40	Zebrafish models for studying bone cancers: mutants, transgenic fish and embryos. , 2015, , 365-370.		1
41	MEK inhibition induces apoptosis in osteosarcoma cells with constitutive ERK1/2 phosphorylation. Genes and Cancer, 2015, 6, 503-512.	1.9	28
42	Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines. Oncotarget, 2015, 6, 12505-12519.	1.8	81
43	The oncometabolite D-2-hydroxyglutarate induced by mutant IDH1 or -2 blocks osteoblast differentiation <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2015, 6, 14832-14842.	1.8	33
44	Pharmacological inhibition of Bcl-xL sensitizes osteosarcoma to doxorubicin. Oncotarget, 2015, 6, 36113-36125.	1.8	39
45	Kinome and mRNA expression profiling of high-grade osteosarcoma cell lines implies Akt signaling as possible target for therapy. BMC Medical Genomics, 2014, 7, 4.	1.5	59
46	Gene expression profiling of giant cell tumor of bone reveals downregulation of extracellular matrix components decorin and lumican associated with lung metastasis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 465, 703-713.	2.8	15
47	Mesenchymal stem cell transformation and sarcoma genesis. Clinical Sarcoma Research, 2013, 3, 10.	2.3	77
48	IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma. BMC Cancer, 2013, 13, 245.	2.6	73
49	Update on Targets and Novel Treatment Options for High-Grade Osteosarcoma and Chondrosarcoma. Hematology/Oncology Clinics of North America, 2013, 27, 1021-1048.	2.2	65
50	Genome-wide analyses on high-grade osteosarcoma: Making sense of a genomically most unstable tumor. International Journal of Cancer, 2013, 133, n/a-n/a.	5.1	64
51	Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. Journal of Clinical Investigation, 2013, 123, 5351-5360.	8.2	54
52	Immunotherapy. Oncolmmunology, 2012, 1, 255-257.	4.6	5
53	Osteosarcoma Models: From Cell Lines to Zebrafish. Sarcoma, 2012, 2012, 1-11.	1.3	26
54	Molecular pathology and its diagnostic use in bone tumors. Cancer Genetics, 2012, 205, 193-204.	0.4	80

#	Article	IF	CITATIONS
55	The activities of Smad and Gli mediated signalling pathways in high-grade conventional osteosarcoma. European Journal of Cancer, 2012, 48, 3429-3438.	2.8	43
56	Modulation of the Osteosarcoma Expression Phenotype by MicroRNAs. PLoS ONE, 2012, 7, e48086.	2.5	253
57	An osteosarcoma zebrafish model implicates <i>Mmpâ€19</i> and <i>Etsâ€1</i> as well as reduced host immune response in angiogenesis and migration. Journal of Pathology, 2012, 227, 245-253.	4.5	28
58	Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Genes Chromosomes and Cancer, 2012, 51, 696-706.	2.8	108
59	Integrative Analysis Reveals Relationships of Genetic and Epigenetic Alterations in Osteosarcoma. PLoS ONE, 2012, 7, e48262.	2.5	87
60	Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nature Genetics, 2011, 43, 1256-1261.	21.4	488
61	Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Laboratory Investigation, 2011, 91, 1195-1205.	3.7	155
62	mRNA expression profiles of primary high-grade central osteosarcoma are preserved in cell lines and xenografts. BMC Medical Genomics, 2011, 4, 66.	1.5	30
63	Expression of aromatase and estrogen receptor alpha in chondrosarcoma, but no beneficial effect of inhibiting estrogen signaling both in vitro and in vivo. Clinical Sarcoma Research, 2011, 1, 5.	2.3	29
64	Workshop Report on the European Bone Sarcoma Networking Meeting: Integration of Clinical Trials with Tumor Biology. Journal of Adolescent and Young Adult Oncology, 2011, 1, 118-123.	1.3	2
65	Tumor-Infiltrating Macrophages Are Associated with Metastasis Suppression in High-Grade Osteosarcoma: A Rationale for Treatment with Macrophage Activating Agents. Clinical Cancer Research, 2011, 17, 2110-2119.	7.0	365
66	MLPAinter for MLPA interpretation: an integrated approach for the analysis, visualisation and data management of Multiplex Ligation-dependent Probe Amplification. BMC Bioinformatics, 2010, 11, 67.	2.6	12
67	Evaluation of high-resolution microarray platforms for genomic profiling of bone tumours. BMC Research Notes, 2010, 3, 223.	1.4	12
68	Molecular characterization of commonly used cell lines for bone tumor research: A transâ€European EuroBoNet effort. Genes Chromosomes and Cancer, 2010, 49, 40-51.	2.8	141
69	Small deletions but not methylation underlie <i>CDKN2A/p16</i> loss of expression in conventional osteosarcoma. Genes Chromosomes and Cancer, 2010, 49, 1095-1103.	2.8	52
70	Inactive Wnt/βâ€catenin pathway in conventional highâ€grade osteosarcoma. Journal of Pathology, 2010, 220, 24-33.	4.5	138
71	Central chondrosarcoma progression is associated with pRb pathway alterations: CDK4 downâ€regulation and p16 overexpression inhibit cell growth in vitro. Journal of Cellular and Molecular Medicine, 2009, 13, 2843-2852.	3.6	83
72	Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of <i>Cdkn2</i> . Journal of Pathology, 2009, 219, 294-305.	4.5	234

#	Article	IF	CITATIONS
73	Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. British Journal of Cancer, 2009, 101, 1909-1918.	6.4	67
74	Aberrant Heparan Sulfate Proteoglycan Localization, Despite Normal Exostosin, in Central Chondrosarcoma. American Journal of Pathology, 2009, 174, 979-988.	3.8	42
75	ATBF1 and NQO1 as candidate targets for allelic loss at chromosome arm 16q in breast cancer: Absence of somatic ATBF1 mutations and no role for the C609T NQO1 polymorphism. BMC Cancer, 2008, 8, 105.	2.6	18
76	The Role of EXT1 in Nonhereditary Osteochondroma: Identification of Homozygous Deletions. Journal of the National Cancer Institute, 2007, 99, 396-406.	6.3	101
77	The use of Bcl-2 and PTHLH immunohistochemistry in the diagnosis of peripheral chondrosarcoma in a clinicopathological setting. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 446, 430-437.	2.8	38
78	Absence of IHH and retention of PTHrP signalling in enchondromas and central chondrosarcomas. Journal of Pathology, 2005, 205, 476-482.	4.5	86
79	Estrogen Signaling Is Active in Cartilaginous Tumors: Implications for Antiestrogen Therapy as Treatment Option of Metastasized or Irresectable Chondrosarcoma. Clinical Cancer Research, 2005, 11, 8028-8035.	7.0	53
80	FBXO31 Is the Chromosome 16q24.3 Senescence Gene, a Candidate Breast Tumor Suppressor, and a Component of an SCF Complex. Cancer Research, 2005, 65, 11304-11313.	0.9	72
81	Central high-grade osteosarcoma of bone: Diagnostic and genetic considerations. Current Diagnostic Pathology, 2005, 11, 390-399.	0.4	11
82	Expression analysis of candidate breast tumour suppressor genes on chromosome 16q. Breast Cancer Research, 2005, 7, R998-1004.	5.0	35
83	Multiplex Ligationâ€Dependent Probe Amplification for the Detection of 1p and 19q Chromosomal Loss in Oligodendroglial Tumors. Brain Pathology, 2005, 15, 192-197.	4.1	36
84	A distinct phenotype characterizes tumors from a putative genetic trait involving chondrosarcoma and breast cancer occurring in the same patient. Laboratory Investigation, 2004, 84, 191-202.	3.7	11
85	Different mechanisms of chromosome 16 loss of heterozygosity in well- versus poorly differentiated ductal breast cancer. Genes Chromosomes and Cancer, 2004, 41, 109-116.	2.8	57
86	Infiltrating leukocytes confound the detection of E-cadherin promoter methylation in tumors. Biochemical and Biophysical Research Communications, 2004, 319, 697-697.	2.1	0
87	Infiltrating leukocytes confound the detection of E-cadherin promoter methylation in tumors. Biochemical and Biophysical Research Communications, 2004, 319, 697-704.	2.1	22
88	Loss of heterozygosity analysis: Practically and conceptually flawed?. Genes Chromosomes and Cancer, 2002, 34, 349-353.	2.8	74
89	Tumor-associated zinc finger mutations in the CTCF transcription factor selectively alter tts DNA-binding specificity. Cancer Research, 2002, 62, 48-52.	0.9	141
90	CBFA2T3 (MTG16) is a putative breast tumor suppressor gene from the breast cancer loss of heterozygosity region at 16q24.3. Cancer Research, 2002, 62, 4599-604.	0.9	58

#	Article	IF	CITATIONS
91	E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer?. Breast Cancer Research, 2001, 4, 5-8.	5.0	104
92	Chondrosarcoma is not characterized by detectable telomerase activity. Journal of Pathology, 2001, 193, 354-360.	4.5	15
93	Ever since Knudson. Trends in Genetics, 2001, 17, 569-573.	6.7	93
94	A sporadic breast tumor with a somatically acquired complex genomic rearrangement inBRCA1. , 2000, 27, 295-302.		26
95	Allelotype analysis of flow-sorted breast cancer cells demonstrates genetically related diploid and aneuploid subpopulations in primary tumors and lymph node metastases. , 2000, 28, 173-183.		38
96	Up-Regulation of PTHrP and Bcl-2 Expression Characterizes the Progression of Osteochondroma towards Peripheral Chondrosarcoma and Is a Late Event in Central Chondrosarcoma. Laboratory Investigation, 2000, 80, 1925-1934.	3.7	130
97	Near-Haploidy and Subsequent Polyploidization Characterize the Progression of Peripheral Chondrosarcoma. American Journal of Pathology, 2000, 157, 1587-1595.	3.8	59
98	Loss of heterozygosity at 11q23.1 and survival in breast cancer: Results of a large European study. Genes Chromosomes and Cancer, 1999, 25, 212-221.	2.8	34
99	Loss of heterozygosity and DNA ploidy point to a diverging genetic mechanism in the origin of peripheral and central chondrosarcoma. , 1999, 26, 237-246.		92
100	Molecular genetic characterization of both components of a dedifferentiated chondrosarcoma, with implications for its histogenesis. , 1999, 189, 454-462.		111
101	EXT-Mutation Analysis and Loss of Heterozygosity in Sporadic and Hereditary Osteochondromas and Secondary Chondrosarcomas. American Journal of Human Genetics, 1999, 65, 689-698.	6.2	174
102	Loss of heterozygosity and DNA ploidy point to a diverging genetic mechanism in the origin of peripheral and central chondrosarcoma. Genes Chromosomes and Cancer, 1999, 26, 237-246.	2.8	2
103	Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinomain situ. Journal of Pathology, 1997, 183, 404-411.	4.5	273
104	At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosomes and Cancer, 1994, 9, 101-107.	2.8	123