
Jeffrey M Witkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6725278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The orally bioavailable imidazodiazepine, KRM-II-81, is a novel potentiator of α2/3-containing GABAA receptors with analgesic efficacy. , 2022, , 117-127.		2
2	GABAkines – Advances in the discovery, development, and commercialization of positive allosteric modulators of GABAA receptors. , 2022, 234, 108035.		48
3	The imidazodiazepine, KRM-II-81: An example of a newly emerging generation of GABAkines for neurological and psychiatric disorders. Pharmacology Biochemistry and Behavior, 2022, 213, 173321.	1.3	27
4	The romantic age of pharmacological science. Pharmacology Biochemistry and Behavior, 2022, 214, 173354.	1.3	1
5	Metabolism, pharmacokinetics, and anticonvulsant activity ofÂa deuterated analog of the α2/3â€selective GABAkine KRMâ€llâ€81. Biopharmaceutics and Drug Disposition, 2022, 43, 66-75.	1.1	4
6	Rationalizing the binding and α subtype selectivity of synthesized imidazodiazepines and benzodiazepines at GABAA receptors by using molecular docking studies. Bioorganic and Medicinal Chemistry Letters, 2022, 62, 128637.	1.0	8
7	Can GABAkines quiet the noise? The GABAA receptor neurobiology and pharmacology of tinnitus. Biochemical Pharmacology, 2022, 201, 115067.	2.0	3
8	Design, synthesis and characterization of novel gamma‑aminobutyric acid type A receptor ligands. Arkivoc, 2021, 2020, 242-256.	0.3	5
9	N-Substituted-3-alkoxy-derivatives of dextromethorphan are functional NMDA receptor antagonists in vivo: Evidence from an NMDA-induced seizure model in rats. Pharmacology Biochemistry and Behavior, 2021, 203, 173154.	1.3	4
10	Rapid tolerance to behavioral effects of ethanol in rats: Prevention by R-(â^)-ketamine. Pharmacology Biochemistry and Behavior, 2021, 203, 173152.	1.3	2
11	Distinct cognitive and discriminative stimulus effects of ketamine enantiomers in rats. Pharmacology Biochemistry and Behavior, 2020, 197, 173011.	1.3	10
12	Imidazodiazepine Anticonvulsant, KRM-II-81, Produces Novel, Non-diazepam-like Antiseizure Effects. ACS Chemical Neuroscience, 2020, 11, 2624-2637.	1.7	10
13	Involvement of muscarinic receptor mechanisms in antidepressant drug action. Advances in Pharmacology, 2020, 89, 311-356.	1.2	9
14	The Positive Allosteric Modulator of <i>α</i> 2/3-Containing GABA _A Receptors, KRM-II-81, Is Active in Pharmaco-Resistant Models of Epilepsy and Reduces Hyperexcitability after Traumatic Brain Injury. Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 83-94.	1.3	18
15	mGlu2/3 receptor antagonism: A mechanism to induce rapid antidepressant effects without ketamine-associated side-effects. Pharmacology Biochemistry and Behavior, 2020, 190, 172854.	1.3	24
16	The value of human epileptic tissue in the characterization and development of novel antiepileptic drugs: The example of CERC-611 and KRM-II-81. Brain Research, 2019, 1722, 146356.	1,1	7
17	Preface. Advances in Pharmacology, 2019, 86, xi-xiii.	1.2	0
18	A medium throughput rodent model of relapse from addiction with behavioral and pharmacological specificity. Pharmacology Biochemistry and Behavior, 2019, 183, 72-79.	1.3	3

#	Article	IF	CITATIONS
19	Rapid-acting antidepressants. Advances in Pharmacology, 2019, 86, 47-96.	1.2	49
20	Evaluation of 5-HT7 receptor antagonism for the treatment of anxiety, depression, and schizophrenia through the use of receptor-deficient mice. Behavioural Brain Research, 2019, 360, 270-278.	1.2	20
21	Effects of 5-HT7 receptor antagonists on behaviors of mice that detect drugs used in the treatment of anxiety, depression, or schizophrenia. Behavioural Brain Research, 2019, 359, 467-473.	1.2	9
22	Animal models of fatigue in major depressive disorder. Physiology and Behavior, 2019, 199, 300-305.	1.0	9
23	Negative allosteric modulation of alpha 5-containing GABAA receptors engenders antidepressant-like effects and selectively prevents age-associated hyperactivity in tau-depositing mice. Psychopharmacology, 2018, 235, 1151-1161.	1.5	21
24	Protein complexes as psychiatric and neurological drug targets. Biochemical Pharmacology, 2018, 151, 263-281.	2.0	11
25	Chronic pain impairs cognitive flexibility and engages novel learning strategies in rats. Pain, 2018, 159, 1403-1412.	2.0	24
26	Auxiliary subunits of AMPA receptors: The discovery of a forebrain-selective antagonist, LY3130481/CERC-611. Biochemical Pharmacology, 2018, 147, 191-200.	2.0	15
27	Therapeutic Approaches for NOP Receptor Antagonists in Neurobehavioral Disorders: Clinical Studies in Major Depressive Disorder and Alcohol Use Disorder with BTRX-246040 (LY2940094). Handbook of Experimental Pharmacology, 2018, 254, 399-415.	0.9	20
28	Pharmacological characterization of the neurotrophic sesquiterpene jiadifenolide reveals a non-convulsant signature and potential for progression in neurodegenerative disease studies. Biochemical Pharmacology, 2018, 155, 61-70.	2.0	17
29	Rapid-Acting Antidepressants. Current Pharmaceutical Design, 2018, 24, 2556-2563.	0.9	36
30	Targeted Blockade of TARP-Î ³ 8-Associated AMPA Receptors: Anticonvulsant Activity with the Selective Antagonist LY3130481 (CERC-611). CNS and Neurological Disorders - Drug Targets, 2018, 16, 1099-1110.	0.8	9
31	InÂvitro pharmacological and rat pharmacokinetic characterization of LY3020371, a potent and selective mGlu 2/3 receptor antagonist. Neuropharmacology, 2017, 115, 100-114.	2.0	21
32	Synthesis of (â^')-11- <i>O</i> -Debenzoyltashironin: Neurotrophic Sesquiterpenes Cause Hyperexcitation. Journal of the American Chemical Society, 2017, 139, 9637-9644.	6.6	54
33	Electroencephalographic, cognitive, and neurochemical effects of LY3130481 (CERC-611), a selective antagonist of TARP-138-associated AMPA receptors. Neuropharmacology, 2017, 126, 257-270.	2.0	13
34	Consequences of constitutive deletion of melanin-concentrating hormone-1 receptors for feeding and foraging behaviors of mice. Behavioural Brain Research, 2017, 316, 271-278.	1.2	4
35	Behavioral Effects of a Novel Benzofuranyl-Piperazine Serotonin-2C Receptor Agonist Suggest a Potential Therapeutic Application in the Treatment of Obsessive–Compulsive Disorder. Frontiers in Psychiatry, 2017, 8, 89.	1.3	12
36	Further Evaluation of Mechanisms Associated with the Antidepressantlike Signature of Scopolamine in Mice. CNS and Neurological Disorders - Drug Targets, 2017, 16, 492-500.	0.8	25

#	Article	IF	CITATIONS
37	A Novel, Orally Bioavailable Nociceptin Receptor Antagonist, LY2940094, Reduces Ethanol Self-Administration and Ethanol Seeking in Animal Models. Alcoholism: Clinical and Experimental Research, 2016, 40, 945-954.	1.4	53
38	Discovery of the First α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonist Dependent upon Transmembrane AMPA Receptor Regulatory Protein (TARP) γ-8. Journal of Medicinal Chemistry, 2016, 59, 4753-4768.	2.9	48
39	Synthesis and Characterization of a Novel γ-Aminobutyric Acid Type A (GABA _A) Receptor Ligand That Combines Outstanding Metabolic Stability, Pharmacokinetics, and Anxiolytic Efficacy. Journal of Medicinal Chemistry, 2016, 59, 10800-10806.	2.9	43
40	Discovery of (1 <i>S</i> ,2 <i>R</i> ,3 <i>S</i> ,4 <i>S</i> ,5 <i>R</i> ,6 <i>R</i>)-2-Amino-3-[(3,4-difluorophenyl)sulfanylmethyl] Acid Hydrochloride (LY3020371·HCl): A Potent, Metabotropic Glutamate 2/3 Receptor Antagonist with Antidepressant-Like Activity. Journal of Medicinal Chemistry, 2016, 59, 10974-10993.	-4-hydroxy-	bicyclo[3.1.0]
41	Forebrain-selective AMPA-receptor antagonism guided by TARP Î ³ -8 as an antiepileptic mechanism. Nature Medicine, 2016, 22, 1496-1501.	15.2	77
42	Preclinical findings predicting efficacy and sideâ€effect profile of <scp>LY</scp> 2940094, an antagonist of nociceptin receptors. Pharmacology Research and Perspectives, 2016, 4, e00275.	1.1	29
43	Failed trials for central nervous system disorders do not necessarily invalidate preclinical models and drug targets. Nature Reviews Drug Discovery, 2016, 15, 516-516.	21.5	58
44	A Novel Nociceptin Receptor Antagonist LY2940094 Inhibits Excessive Feeding Behavior in Rodents: A Possible Mechanism for the Treatment of Binge Eating Disorder. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 493-502.	1.3	44
45	A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies. Neuropsychopharmacology, 2016, 41, 1803-1812.	2.8	82
46	Hedonic and motivational responses to food reward are unchanged in rats with neuropathic pain. Pain, 2016, 157, 2731-2738.	2.0	38
47	Commentary: Obstacles to the Discovery of Medicines for Psychiatric Disorders in Modern Times [§] . CNS and Neurological Disorders - Drug Targets, 2015, 14, 4-6.	0.8	5
48	Discovery of a Novel Series of Orally Active Nociceptin/Orphanin FQ (NOP) Receptor Antagonists Based on a Dihydrospiro(piperidine-4,7′-thieno[2,3- <i>c</i>]pyran) Scaffold. Journal of Medicinal Chemistry, 2014, 57, 3418-3429.	2.9	51
49	The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. , 2014, 141, 283-299.		166
50	mGlu5 receptor deletion reduces relapse to food-seeking and prevents the anti-relapse effects of mGlu5 receptor blockade in mice. Life Sciences, 2011, 89, 862-867.	2.0	9
51	Commentary [The Mood in the Field of Antidepressant Drug Discovery]. CNS and Neurological Disorders - Drug Targets, 2011, 10, 762-763.	0.8	4
52	<i>N</i> -(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1 <i>H</i> -imidazole (THIIC), a Novel Metabotropic Glutamate 2 Potentiator with Potential Anxiolytic/Antidepressant Properties: In Vivo Profiling Suggests a Link between Behavioral and Central Nervous System Neurochemical Changes. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 165-177.	e-4-carboxa 1.3	mide 101
53	Preclinical Evaluation of Melanin-Concentrating Hormone Receptor 1 Antagonism for the Treatment of Obesity and Depression. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 429-438.	1.3	77
54	New Approaches to the Pharmacological Management of Major Depressive Disorder. Advances in Pharmacology, 2009, 57, 347-379.	1.2	11

#	Article	IF	CITATIONS
55	Mood disorders: Regulation by metabotropic glutamate receptors. Biochemical Pharmacology, 2008, 75, 997-1006.	2.0	164
56	Animal Models of Obsessiveâ€Compulsive Disorder. Current Protocols in Neuroscience, 2008, 45, Unit 9.30.	2.6	44
57	mGlu5 receptor deletion does not confer seizure protection to mice. Life Sciences, 2008, 83, 377-380.	2.0	17
58	Metabotropic Glutamate Receptors in the Control of Mood Disorders. CNS and Neurological Disorders - Drug Targets, 2007, 6, 87-100.	0.8	129
59	Constitutive deletion of the serotonin-7 (5-HT7) receptor decreases electrical and chemical seizure thresholds. Epilepsy Research, 2007, 75, 39-45.	0.8	44
60	Decreases in nestlet shredding of mice by serotonin uptake inhibitors: Comparison with marble burying. Life Sciences, 2006, 78, 1933-1939.	2.0	112
61	In vitro and in vivo studies in rats with LY293558 suggest AMPA/kainate receptor blockade as a novel potential mechanism for the therapeutic treatment of anxiety disorders. Psychopharmacology, 2006, 185, 240-247.	1.5	31
62	A role for AMPA receptors in mood disorders. Biochemical Pharmacology, 2006, 71, 1273-1288.	2.0	211
63	Metabotropic Glutamate 5 Receptor Antagonism Is Associated with Antidepressant-Like Effects in Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 254-259.	1.3	161
64	A rapid punishment procedure for detection of anxiolytic compounds in mice. Psychopharmacology, 2004, 172, 52-57.	1.5	16
65	Enhancement of antidepressant potency by a potentiator of AMPA receptors. Cellular and Molecular Neurobiology, 2003, 23, 419-430.	1.7	101
66	Protective efficacy of neuroactive steroids against cocaine kindled-seizures in mice. European Journal of Pharmacology, 2003, 474, 217-222.	1.7	43
67	Attenuation of the stimulant and convulsant effects of cocaine by 17-substituted-3-hydroxy and 3-alkoxy derivatives of dextromethorphan. Pharmacology Biochemistry and Behavior, 2003, 74, 313-323.	1.3	12
68	Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3182-3187.	3.3	217
69	Some contextual and historical determinants of the effects of chlordiazepoxide on punished responding of rats. Psychopharmacology, 2002, 163, 488-494.	1.5	4
70	Acute and chronic effects of the synthetic neuroactive steroid, ganaxolone, against the convulsive and lethal effects of pentylenetetrazol in seizure-kindled mice: comparison with diazepam and valproate. Neuropharmacology, 2000, 39, 1184-1196.	2.0	84
71	Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends in Pharmacological Sciences, 1999, 20, 107-112.	4.0	192
72	Antiepileptogenic effects of the novel synthetic neuroactive steroid, ganaxolone, against pentylenetetrazol-induced kindled seizures: Comparison with diazepam and valproate. Drug Development Research, 1998, 44, 21-33.	1.4	12

#	Article	IF	CITATIONS
73	Dizocilpine-like discriminative stimulus effects of competitive NMDA receptor antagonists in mice. Psychopharmacology, 1997, 133, 43-50.	1.5	22
74	Sensitive and rapid behavioral differentiation ofN-methyl-d-aspartate receptor antagonists. Psychopharmacology, 1994, 114, 573-582.	1.5	75
75	Modulators of N-methyl-D-aspartate protect against diazepam- or phenobarbital-resistant cocaine convulsions. Life Sciences, 1991, 48, PL51-PL56.	2.0	57
76	Behavioral effects of cocaine alone and in combination with selective dopamine antagonists in the squirrel monkey. Psychopharmacology, 1991, 103, 33-40.	1.5	12
77	Some behavioral effects of repeatedd-amphetamine administrations. Drug Development Research, 1990, 20, 31-41.	1.4	1
78	Analysis of behavioral effects of drugs. Drug Development Research, 1990, 20, 389-409.	1.4	28
79	Behavioral effects of non-opioid antitussive anticonvulsants. Drug Development Research, 1989, 18, 57-65.	1.4	4
80	Central and peripheral muscarinic actions of physostigmine and oxotremorine on avoidance responding of squirrel monkeys. Psychopharmacology, 1989, 97, 376-382.	1.5	12
81	Effects of pentobarbital on punished behavior at different shock intensities. Pharmacology Biochemistry and Behavior, 1976, 5, 535-538.	1.3	19