
Sobhan Sen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6724885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrafast Dynamics in DNA:  "Fraying―at the End of the Helix. Journal of the American Chemical Society, 2006, 128, 6885-6892.	13.7	130
2	Fluorescence Correlation Spectroscopy: An Efficient Tool for Measuring Size, Size-Distribution and Polydispersity of Microemulsion Droplets in Solution. Analytical Chemistry, 2011, 83, 7736-7744.	6.5	113
3	Solvation Dynamics of DCM in Human Serum Albumin. Journal of Physical Chemistry B, 2001, 105, 1438-1441.	2.6	103
4	Dynamics of Water and Ions Near DNA: Comparison of Simulation to Time-Resolved Stokes-Shift Experiments. Journal of the American Chemical Society, 2009, 131, 1724-1735.	13.7	86
5	Fluorescence Anisotropy Decay in Polymerâ	2.5	79
6	Solvation Dynamics in Aqueous Polymer Solution and in Polymerâ´'Surfactant Aggregate. Journal of Physical Chemistry B, 2002, 106, 3763-3769.	2.6	76
7	Solvation dynamics of DCM in micelles. Chemical Physics Letters, 2000, 327, 91-96.	2.6	74
8	Solvation Dynamics of Coumarin 480 in Solâ~'Gel Matrix. Journal of Physical Chemistry B, 2000, 104, 2613-2616.	2.6	68
9	Solvation Dynamics of a Probe Covalently Bound to a Protein and in an AOT Microemulsion:Â 4-(N-Bromoacetylamino)-Phthalimide. Journal of Physical Chemistry B, 2002, 106, 10741-10747.	2.6	63
10	Femtosecond study of solvation dynamics of DCM in micelles. Chemical Physics Letters, 2002, 359, 77-82.	2.6	59
11	Measuring Size, Size Distribution, and Polydispersity of Water-in-Oil Microemulsion Droplets using Fluorescence Correlation Spectroscopy: Comparison to Dynamic Light Scattering. Journal of Physical Chemistry B, 2016, 120, 1008-1020.	2.6	57
12	Slow Solvation Dynamics of Dimethylformamide in a Nanocavity. 4-Aminophthalimide in β-Cyclodextrin. Journal of Physical Chemistry A, 2001, 105, 10635-10639.	2.5	56
13	Understanding Growth Kinetics of Nanorods in Microemulsion: A Combined Fluorescence Correlation Spectroscopy, Dynamic Light Scattering, and Electron Microscopy Study. Journal of the American Chemical Society, 2012, 134, 19677-19684.	13.7	54
14	Probe Position Dependence of DNA Dynamics: Comparison of the Time-Resolved Stokes Shift of Groove-Bound to Base-Stacked Probes. Journal of the American Chemical Society, 2010, 132, 9277-9279.	13.7	52
15	Solvation Dynamics in Bile Salt Aggregates. Journal of Physical Chemistry B, 2002, 106, 7745-7750.	2.6	49
16	Excited State Proton Transfer as a Probe for Polymerâ^'Surfactant Interaction. Journal of Physical Chemistry B, 2000, 104, 6128-6132.	2.6	47
17	Solvation dynamics in a protein–surfactant complex. Chemical Physics Letters, 2003, 377, 229-235.	2.6	46
18	Potent Antimalarial Activity of Acriflavine <i>In Vitro</i> and <i>In Vivo</i> . ACS Chemical Biology, 2014, 9, 2366-2373.	3.4	44

Sobhan Sen

#	Article	IF	CITATIONS
19	Insight into Pleiotropic Drug Resistance ATP-binding Cassette Pump Drug Transport through Mutagenesis of Cdr1p Transmembrane Domains*. Journal of Biological Chemistry, 2013, 288, 24480-24493.	3.4	42
20	Understanding Ligand Interaction with Different Structures of G-Quadruplex DNA: Evidence of Kinetically Controlled Ligand Binding and Binding-Mode Assisted Quadruplex Structure Alteration. Analytical Chemistry, 2012, 84, 7218-7226.	6.5	40
21	Solvation Dynamics in the Water Pool of Aerosol Sodium Dioctylsulfosuccinate Microemulsion:Â Effect of Polymer. Journal of Physical Chemistry A, 2002, 106, 6017-6023.	2.5	34
22	Different Molecules Experience Different Polarities at the Air/Water Interface. Angewandte Chemie - International Edition, 2009, 48, 6439-6442.	13.8	33
23	Effect of Protein Binding on Ultrafast DNA Dynamics: Characterization of a DNA:APE1 Complex. Biophysical Journal, 2005, 89, 4129-4138.	0.5	32
24	Rationally Designed Transmembrane Peptide Mimics of the Multidrug Transporter Protein Cdr1 Act as Antagonists to Selectively Block Drug Efflux and Chemosensitize Azole-resistant Clinical Isolates of Candida albicans. Journal of Biological Chemistry, 2013, 288, 16775-16787.	3.4	31
25	Role of Monovalent Counterions in the Ultrafast Dynamics of DNA. Journal of Physical Chemistry B, 2006, 110, 13248-13255.	2.6	30
26	Power-Law Solvation Dynamics in G-Quadruplex DNA: Role of Hydration Dynamics on Ligand Solvation inside DNA. Journal of Physical Chemistry Letters, 2015, 6, 1754-1760.	4.6	26
27	Excited State Proton Transfer of 1-Naphthol in a Hydroxypropylcellulose/Sodium Dodecyl Sulfate System. Langmuir, 2002, 18, 7867-7871.	3.5	25
28	Solvation dynamics of TNS in polymer (PEG)–surfactant (SDS) aggregate. Chemical Physics Letters, 2002, 359, 15-21.	2.6	24
29	Graphene Quantum Dot-Based Optical Sensing Platform for Aflatoxin B1 Detection <i>via</i> the Resonance Energy Transfer Phenomenon. ACS Applied Bio Materials, 2022, 5, 1179-1186.	4.6	24
30	"Half-hydration―at the air/water interface revealed by heterodyne-detected electronic sum frequency generation spectroscopy, polarization second harmonic generation, and molecular dynamics simulation. Journal of Chemical Physics, 2010, 132, 144701.	3.0	23
31	Probe Position-Dependent Counterion Dynamics in DNA: Comparison of Time-Resolved Stokes Shift of Groove-Bound to Base-Stacked Probes in the Presence of Different Monovalent Counterions. Journal of Physical Chemistry Letters, 2012, 3, 2621-2626.	4.6	23
32	Sequence-Dependent Solvation Dynamics of Minor-Groove Bound Ligand Inside Duplex-DNA. Journal of Physical Chemistry B, 2015, 119, 11019-11029.	2.6	23
33	Solvation Dynamics of DCM in Dipalmitoyl Phosphatidylcholine Lipid. Tetrahedron, 2000, 56, 6999-7002.	1.9	20
34	Solvation dynamics in a protein–surfactant aggregate. TNS in HSA–SDS. Chemical Physics Letters, 2003, 379, 471-478.	2.6	20
35	Solvation Dynamics in Dimyristoyl-Phosphatidylcholine Entrapped Inside a Solâ^'Gel Matrix. Journal of Physical Chemistry B, 2004, 108, 2309-2312.	2.6	18
36	Origin of Slow Solvation Dynamics in DNA: DAPI in Minor Groove of Dickerson-Drew DNA. Journal of Physical Chemistry B, 2019, 123, 10202-10216.	2.6	15

Sobhan Sen

#	Article	IF	CITATIONS
37	New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers. Physical Chemistry Chemical Physics, 2016, 18, 24185-24197.	2.8	14
38	Dynamics of water and ions around DNA: What is so special about them?. Journal of Biosciences, 2018, 43, 499-518.	1.1	14
39	Effect of T·T Mismatch on DNA Dynamics Probed by Minor Groove Binders: Comparison of Dynamic Stokes Shifts of Hoechst and DAPI. Journal of Physical Chemistry B, 2017, 121, 10735-10748.	2.6	12
40	Cdr1p highlights the role of the non-hydrolytic ATP-binding site in driving drug translocation in asymmetric ABC pumps. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183131.	2.6	12
41	Solvation dynamics of 4-aminophthalimide in a polymer (PVP)–surfactant (SDS) aggregate. Physical Chemistry Chemical Physics, 2003, 5, 4875-4879.	2.8	10
42	Multidrug ABC transporter Cdr1 of Candida albicans harbors specific and overlapping binding sites for human steroid hormones transport. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1778-1789.	2.6	9
43	Probe-location dependent resonance energy transfer at lipid/water interfaces: comparison between the gel- and fluid-phase of lipid bilayer. Physical Chemistry Chemical Physics, 2017, 19, 25870-25885.	2.8	9
44	Role of Ser65, His148 and Thr203 in the Organic Solventâ€dependent Spectral Shift in Green Fluorescent Protein. Photochemistry and Photobiology, 2019, 95, 543-555.	2.5	9
45	Dispersed dynamics of solvation in C-quadruplex DNA: comparison of dynamic Stokes shifts of probes in parallel and antiparallel quadruplex structures. Methods and Applications in Fluorescence, 2016, 4, 034009.	2.3	8
46	Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric. Scientific Reports, 2016, 6, 27132.	3.3	6
47	Molecular Picture of the Effect of Cosolvent Crowding on Ligand Binding and Dispersed Solvation Dynamics in G-Quadruplex DNA. Journal of Physical Chemistry B, 2022, 126, 1668-1681.	2.6	6
48	Ras hyperactivation versus overexpression: Lessons from Ras dynamics in Candida albicans. Scientific Reports, 2018, 8, 5248.	3.3	5
49	Dynamics of water and ions around DNA: What is so special about them?. Journal of Biosciences, 2018, 43, 499-518.	1.1	4
50	DNA damage, cell cycle perturbation and cell death by naphthalene diimide derivative in gastric cancer cells. Chemico-Biological Interactions, 2022, 358, 109881.	4.0	4
51	Isomerization and fluorescence depolarization of merocyanine 540 in polyacrylic acid. Effect ofpH. Journal of Chemical Sciences, 2002, 114, 501-511.	1.5	2
52	Photoisomerization of merocyanine 540 in polymer-surfactant aggregate. Journal of Chemical Sciences, 2002, 114, 83-91.	1.5	2
53	Dynamics of Water and Ions Near DNA: Perspective from Time-Resolved Fluorescence Stokes Shift Experiments and Molecular Dynamics Simulation. Reviews in Fluorescence, 2018, , 231-279.	0.5	2
54	Structure of an Unfolding Intermediate of an RRM Domain of ETR-3 Reveals Its Native-like Fold. Biophysical Journal, 2020, 118, 352-365.	0.5	1