Zhenzeng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6724702/publications.pdf

Version: 2024-02-01

33	602	14	24
papers	citations	h-index	g-index
33	33 docs citations	33	538
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Hierarchical Porous Aluminophosphate-Treated Wood for High-Efficiency Solar Steam Generation. ACS Applied Materials & Diterfaces, 2020, 12, 19511-19518.	8.0	86
2	A cake making strategy to prepare reduced graphene oxide wrapped plant fiber sponges for high-efficiency solar steam generation. Journal of Materials Chemistry A, 2018, 6, 14571-14576.	10.3	84
3	Mesoporous aluminosilicate improves mildew resistance of bamboo scrimber with Cu B P anti-mildew agents. Journal of Cleaner Production, 2019, 209, 273-282.	9.3	54
4	Highly Anisotropic Corncob as an Efficient Solar Steam-Generation Device with Heat Localization and Rapid Water Transportation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50397-50405.	8.0	51
5	Hierarchical Lamellar Aluminophosphate Materials with Porosity as Ecofriendly Inorganic Adhesive for Wood-Based Boards. ACS Sustainable Chemistry and Engineering, 2018, 6, 6273-6280.	6.7	35
6	Chitosan used as a specific coupling agent to modify starch in preparation of adhesive film. Journal of Cleaner Production, 2020, 277, 123210.	9.3	31
7	Facile Approach for Glutaraldehyde Cross-Linking of PVA/Aluminophosphate Adhesives for Wood-Based Panels. ACS Sustainable Chemistry and Engineering, 2019, 7, 18524-18533.	6.7	29
8	Incorporation technology of bio-based phase change materials for building envelope: A review. Energy and Buildings, 2022, 260, 111920.	6.7	25
9	Sensitive piezoresistive sensors using ink-modified plant fiber sponges. Chemical Engineering Journal, 2020, 401, 126029.	12.7	22
10	Mesoporous Aluminosilicate Material with Hierarchical Porosity for Ultralow Density Wood Fiber Composite (ULD_WFC). ACS Sustainable Chemistry and Engineering, 2016, 4, 3888-3896.	6.7	21
11	Preparation and characterization of aspirin-loaded polylactic acid/graphene oxide biomimetic nanofibrous scaffolds. Polymer, 2020, 211, 123093.	3.8	21
12	Fabrication and characterization of polylactic acid/polycaprolactone composite macroporous micro-nanofiber scaffolds by phase separation. New Journal of Chemistry, 2020, 44, 17382-17390.	2.8	20
13	Staining of wood veneers with anti-UV property using the natural dye extracted from Dalbergia cohinchinensis. Journal of Cleaner Production, 2021, 284, 124770.	9.3	20
14	A novel particleboard using unsaturated polyester resin as a formaldehyde-free adhesive. Construction and Building Materials, 2017, 148, 781-788.	7.2	14
15	Constructing hydrophobic interfaces in aluminophosphate adhesives with reduced graphene oxide to improve the performance of wood-based boards. Composites Part B: Engineering, 2020, 198, 108168.	12.0	12
16	Hybrid composites of polyvinyl alcohol (PVA)/Si–Al for improving the properties of ultra-low density fiberboard (ULDF). RSC Advances, 2016, 6, 20706-20712.	3.6	11
17	Preparation and characterisation of a novel polylactic acid/hydroxyapatite/graphene oxide/aspirin drug-loaded biomimetic composite scaffold. New Journal of Chemistry, 2021, 45, 10788-10797.	2.8	10
18	Effect of Si–Al molar ratio on microstructure and mechanical properties of ultra-low density fiberboard. European Journal of Wood and Wood Products, 2016, 74, 151-160.	2.9	9

#	Article	IF	CITATIONS
19	Unsaturated Polyester Resin as a Nonformaldehyde Adhesive Used in Bamboo Particle Boards. ACS Omega, 2022, 7, 3483-3490.	3.5	8
20	Modification of Ultra-Low Density Fiberboards by an Inorganic Film Formed by Si-Al Deposition and their Mechanical Properties. BioResources, 2014, 10, .	1.0	7
21	Effect of Silica Sol Content on Thermostability and Mechanical Properties of Ultra-low Density Fiberboards. BioResources, 2014, 10, .	1.0	5
22	Evaluating the Effectiveness of Complex Fire-Retardants on the Fire Properties of Ultra-low Density Fiberboard (ULDF). BioResources, 2015, 11 , .	1.0	4
23	Optimization for Fire Performance of Ultra-low Density Fiberboards Using Response Surface Methodology. BioResources, 2017, 12, .	1.0	4
24	Hierarchical Lamellar Aluminophosphate Inorganic Materials for Medium Density Fiberboard with Good Fire Performance. Journal of Industrial and Engineering Chemistry, 2021, 98, 180-188.	5.8	4
25	Manufacturing and properties of ultra-low density fiberboards with an unsaturated polyester resin by a dry process. European Journal of Wood and Wood Products, 2018, 76, 853-859.	2.9	3
26	Fire Performance of Si-Al Ultra-Low Density Fiberboards Evaluated by Cone Calorimetry. BioResources, 2015, 10, .	1.0	2
27	Effect of Chlorinated Paraffin Nanoemulsion on the Microstructure and Water Repellency of Ultra-Low Density Fiberboard. BioResources, 2016, 11, .	1.0	2
28	Machinability investigation in turning of high density fiberboard. PLoS ONE, 2018, 13, e0203838.	2.5	2
29	Eco-benign PVA/aluminum phosphate as an alternative to formaldehyde-based adhesives in wood-based panels. RSC Advances, 2021, 11, 34416-34423.	3.6	2
30	Application of functionalized carboxymethyl cellulose in development of hierarchical lamellar aluminophosphate for the industrial fabrication of wood based panels. International Journal of Adhesion and Adhesives, 2022, 113, 103051.	2.9	2
31	Effect of PVDC on the Fire Performance of Ultra-Low Density Fiberboards (ULDFs). BioResources, 2016, 11, .	1.0	1
32	Effect of Boron-Zinc-Aluminum-Silicium Compounds on the Fire Performance of Ultra-Low Density Fiberboards (ULDFs). BioResources, 2016, 11, .	1.0	1
33	Optimizing Refining Conditions of Pinus massoniana Cellulose Fibers for Improving the Mechanical Properties of Ultra-Low Density Plant Fiber Composite (ULD_PFC). BioResources, 2016, 12, .	1.0	0