Paul Duchesne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6724301/publications.pdf

Version: 2024-02-01

28 papers 2,396 citations

331670 21 h-index 25 g-index

28 all docs

28 docs citations

28 times ranked

2590 citing authors

#	Article	IF	CITATIONS
1	New black indium oxideâ€"tandem photothermal CO2-H2 methanol selective catalyst. Nature Communications, 2022, 13, 1512.	12.8	47
2	Enhanced CO ₂ Photocatalysis by Indium Oxide Hydroxide Supported on TiN@TiO ₂ Nanotubes. Nano Letters, 2021, 21, 1311-1319.	9.1	35
3	High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nature Communications, 2020, $11,5149$.	12.8	82
4	Plasmonic Titanium Nitride Facilitates Indium Oxide CO ₂ Photocatalysis. Small, 2020, 16, e2005754.	10.0	32
5	Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nature Communications, 2020, 11, 6095.	12.8	129
6	High-Performance, Scalable, and Low-Cost Copper Hydroxyapatite for Photothermal CO2 Reduction. ACS Catalysis, 2020, 10, 13668-13681.	11.2	55
7	Kinetics and Mechanism of Turanite Reduction by Hydrogen. Journal of Physical Chemistry C, 2020, 124, 18356-18365.	3.1	3
8	Shining light on CO ₂ : from materials discovery to photocatalyst, photoreactor and process engineering. Chemical Society Reviews, 2020, 49, 5648-5663.	38.1	91
9	Flash Solid–Solid Synthesis of Silicon Oxide Nanorods. Small, 2020, 16, 2001435.	10.0	2
10	Hydrogen Spillover to Oxygen Vacancy of TiO _{2â€"<i>x</i>} H _{<i>y</i>} /Fe: Breaking the Scaling Relationship of Ammonia Synthesis. Journal of the American Chemical Society, 2020, 142, 17403-17412.	13.7	91
11	Black indium oxide a photothermal CO2 hydrogenation catalyst. Nature Communications, 2020, 11, 2432.	12.8	192
12	ZIF-supported AuCu nanoalloy for ammonia electrosynthesis from nitrogen and thin air. Journal of Materials Chemistry A, 2020, 8, 8868-8874.	10.3	30
13	Building a Bridge from Papermaking to Solar Fuels. Angewandte Chemie - International Edition, 2019, 58, 14850-14854.	13.8	21
14	Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 2019, 10, 3169.	12.8	304
15	Frontispiece: Building a Bridge from Papermaking to Solar Fuels. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
16	Frontispiz: Building a Bridge from Papermaking to Solar Fuels. Angewandte Chemie, 2019, 131, .	2.0	0
17	Building a Bridge from Papermaking to Solar Fuels. Angewandte Chemie, 2019, 131, 14992-14996.	2.0	4
18	Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nature Catalysis, 2019, 2, 889-898.	34.4	234

#	Article	IF	CITATIONS
19	Cu Atoms on Nanowire Pd/H _{<i>y</i>} WO _{3â€"<i>x</i>} Bronzes Enhance the Solar Reverse Water Gas Shift Reaction. Journal of the American Chemical Society, 2019, 141, 14991-14996.	13.7	40
20	Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation. Nature Communications, 2019, 10, 2608.	12.8	104
21	5th Anniversary Article: Towards Solar Methanol: Past, Present, and Future (Adv. Sci. 8/2019). Advanced Science, 2019, 6, 1970048.	11.2	0
22	Towards Solar Methanol: Past, Present, and Future. Advanced Science, 2019, 6, 1801903.	11.2	63
23	Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets. Nature Catalysis, 2019, 2, 46-54.	34.4	116
24	Principles of photothermal gas-phase heterogeneous CO ₂ catalysis. Energy and Environmental Science, 2019, 12, 1122-1142.	30.8	300
25	Photocatalytic Hydrogenation of Carbon Dioxide with High Selectivity to Methanol at Atmospheric Pressure. Joule, 2018, 2, 1369-1381.	24.0	148
26	Tailoring Surface Frustrated Lewis Pairs of In ₂ O _{3â^³} <i>_x</i> (OH) _y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO ₂ by Isomorphous Substitution of In ³⁺ with Bi ³⁺ . Advanced Science, 2018, 5, 1700732.	11.2	91
27	Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane Activation. Journal of the American Chemical Society, 2017, 139, 6928-6945.	13.7	104
28	Metadynamics-Biased ab Initio Molecular Dynamics Study of Heterogeneous CO ₂ Reduction via Surface Frustrated Lewis Pairs. ACS Catalysis, 2016, 6, 7109-7117.	11.2	78