Brent Goehring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/672402/publications.pdf

Version: 2024-02-01

60 papers 2,736 citations

279798 23 h-index 52 g-index

76 all docs 76 docs citations

76 times ranked 2103 citing authors

#	Article	IF	CITATIONS
1	Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology, 2016, 31, 188-198.	1.4	503
2	In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quaternary Geochronology, 2010, 5, 392-409.	1.4	234
3	A ¹⁰ <scp>B</scp> e productionâ€rate calibration for the Arctic. Journal of Quaternary Science, 2013, 28, 515-526.	2.1	188
4	In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: Implications for late-glacial climate chronology. Earth and Planetary Science Letters, 2011, 309, 21-32.	4.4	162
5	The CRONUS-Earth Project: A synthesis. Quaternary Geochronology, 2016, 31, 119-154.	1.4	138
6	A 10Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: implications for seasonality during lateglacial time. Quaternary Science Reviews, 2008, 27, 2273-2282.	3.0	112
7	A reevaluation of in situ cosmogenic 3He production rates. Quaternary Geochronology, 2010, 5, 410-418.	1.4	105
8	Late glacial and holocene ¹⁰ Be production rates for western Norway. Journal of Quaternary Science, 2012, 27, 89-96.	2.1	99
9	The Rhone Glacier was smaller than today for most of the Holocene. Geology, 2011, 39, 679-682.	4.4	91
10	Retreat of the Western Cordilleran Ice Sheet Margin During the Last Deglaciation. Geophysical Research Letters, 2018, 45, 9710-9720.	4.0	81
11	Beryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quaternary Science Reviews, 2008, 27, 320-336.	3.0	79
12	Constraining Holocene ¹⁰ Be production rates in Greenland. Journal of Quaternary Science, 2012, 27, 2-6.	2.1	74
13	Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination. Science, 2017, 358, 781-784.	12.6	74
14	In situ cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake Bonneville, Utah, shoreline features. Quaternary Geochronology, 2015, 26, 56-69.	1.4	70
15	Latest Pleistocene and Holocene glacier fluctuations in southernmost Tierra del Fuego, Argentina. Quaternary Science Reviews, 2013, 77, 70-79.	3.0	53
16	Collapse of marine-based outlet glaciers from the Scandinavian Ice Sheet. Quaternary Science Reviews, 2013, 67, 8-16.	3.0	52
17	The deep accumulation of ¹⁰ Be at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in peripheral ice sheet landscapes. Geophysical Research Letters, 2016, 43, 9121-9129.	4.0	45
18	Constraints on the late Quaternary glacial history of the Inylchek and Sary-Dzaz valleys from in situ cosmogenic 10Be and 26Al, eastern Kyrgyz Tian Shan. Quaternary Science Reviews, 2014, 101, 77-90.	3.0	33

#	Article	IF	CITATIONS
19	Capabilities of the Lamont–Doherty Earth Observatory in situ 14C extraction laboratory updated. Quaternary Geochronology, 2014, 19, 194-197.	1.4	30
20	Changing influence of Antarctic and Greenlandic temperature records on sea-level over the last glacial cycle. Quaternary Science Reviews, 2010, 29, 410-423.	3.0	29
21	Cosmogenic-nuclide exposure ages from the Pensacola Mountains adjacent to the Foundation Ice Stream, Antarctica. Numerische Mathematik, 2016, 316, 542-577.	1.4	27
22	Late-glacial grounding line retreat in the northern Ross Sea, Antarctica. Geology, 2019, 47, 291-294.	4.4	25
23	New Last Glacial Maximum ice thickness constraints for the Weddell Sea Embayment, Antarctica. Cryosphere, 2019, 13, 2935-2951.	3.9	24
24	Middle Pleistocene formation of the Rio Grande Gorge, San Luis Valley, south-central Colorado and north-central New Mexico, USA: Process, timing, and downstream implications. Quaternary Science Reviews, 2019, 223, 105846.	3.0	23
25	Progress in automated extraction and purification of in situ 14C from quartz: Results from the Purdue in situ 14C laboratory. Nuclear Instruments & Methods in Physics Research B, 2015, 361, 381-386.	1.4	22
26	A fully automated system for the extraction of in situ cosmogenic carbon-14 in the Tulane University cosmogenic nuclide laboratory. Nuclear Instruments & Methods in Physics Research B, 2019, 455, 284-292.	1.4	21
27	Abrupt mid-Holocene ice loss in the western Weddell Sea Embayment of Antarctica. Earth and Planetary Science Letters, 2019, 518, 127-135.	4.4	20
28	Deglaciation of Pope Glacier implies widespread early Holocene ice sheet thinning in the Amundsen Sea sector of Antarctica. Earth and Planetary Science Letters, 2020, 548, 116501.	4.4	20
29	West Greenland and global <i>in situ</i> ¹⁴ C productionâ€rate calibrations. Journal of Quaternary Science, 2014, 29, 401-406.	2.1	19
30	Calibration of the <i>in situ</i> cosmogenic ¹⁴ C production rate in New Zealand's Southern Alps. Journal of Quaternary Science, 2012, 27, 671-674.	2.1	18
31	Quaternary evolution and ice sheet history of contrasting landscapes in Uummannaq and Sukkertoppen, western Greenland. Quaternary Science Reviews, 2016, 149, 248-258.	3.0	18
32	Holocene dynamics of the Rhone Glacier, Switzerland, deduced from ice flow models and cosmogenic nuclides. Earth and Planetary Science Letters, 2012, 351-352, 27-35.	4.4	16
33	An in situ 14C–10Be Bayesian isochron approach for interpreting complex glacial histories. Quaternary Geochronology, 2013, 15, 61-66.	1.4	16
34	Where now? Reflections on future directions for cosmogenic nuclide research from the CRONUS Projects. Quaternary Geochronology, 2016, 31, 155-159.	1.4	16
35	The last glaciation of Bear Peninsula, central Amundsen Sea Embayment of Antarctica: Constraints on timing and duration revealed by in situ cosmogenic 14C and 10Be dating. Quaternary Science Reviews, 2017, 178, 77-88.	3.0	16
36	Analysis of multiple cosmogenic nuclides constrains Laurentide Ice Sheet history and process on Mt. Mansfield, Vermont's highest peak. Quaternary Science Reviews, 2019, 205, 234-246.	3.0	16

#	Article	IF	CITATIONS
37	Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica. Cryosphere, 2022, 16, 1543-1562.	3.9	16
38	Dating of raised marine and lacustrine deposits in east Greenland using berylliumâ€10 depth profiles and implications for estimates of subglacial erosion. Journal of Quaternary Science, 2010, 25, 865-874.	2.1	15
39	Thickness of the divide and flank of the West Antarctic Ice Sheet through the last deglaciation. Cryosphere, 2019, 13, 3061-3075.	3.9	15
40	Isolation of quartz for cosmogenic in situ ¹⁴ C analysis. Geochronology, 2019, 1, 43-52.	2.5	12
41	Relative sea-level data preclude major late Holocene ice-mass change in Pine Island Bay. Nature Geoscience, 2022, 15, 568-572.	12.9	12
42	Do phreatomagmatic eruptions at Ubehebe Crater (Death Valley, California) relate to a wetter than present hydroâ€climate?. Geophysical Research Letters, 2012, 39, .	4.0	9
43	Glacial geology and cosmogenic-nuclide exposure ages from the Tucker Glacier - Whitehall Glacier confluence, northern Victoria Land, Antarctica. Numerische Mathematik, 2019, 319, 255-286.	1.4	9
44	Establishing a Bayesian approach to determining cosmogenic nuclide reference production rates using He-3. Earth and Planetary Science Letters, 2018, 481, 91-100.	4.4	8
45	A huge flood in the Fraser River valley, British Columbia, near the Pleistocene Termination. Geomorphology, 2021, 374, 107473.	2.6	8
46	Similar Holocene glaciation histories in tropical South America and Africa. Geology, 2021, 49, 140-144.	4.4	6
47	The distribution and magnitude of subglacial erosion on millennial timescales at Engabreen, Norway. Annals of Glaciology, 2019, 60, 73-81.	1.4	6
48	Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea. Cryosphere, 2021, 15, 3329-3354.	3.9	5
49	Cordilleran Ice Sheet Stability During the Last Deglaciation. Geophysical Research Letters, 2022, 49, .	4.0	5
50	Ultra-trace analysis of 41Ca in urine by accelerator mass spectrometry: An inter-laboratory comparison. Nuclear Instruments & Methods in Physics Research B, 2013, 313, 14-20.	1.4	4
51	How many and from where? Assessing the sensitivity of exposure durations calculated from paired bedrock 14 C/ 10 Be measurements in glacial troughs. Quaternary Geochronology, 2015, 29, 1-5.	1.4	4
52	Measuring multiple cosmogenic nuclides in glacial cobbles sheds light on Greenland Ice Sheet processes. Earth and Planetary Science Letters, 2021, 554, 116673.	4.4	4
53	Early Pleistocene climate-induced erosion of the Alaska Range formed the Nenana Gravel. Geology, 2021, 49, 1473-1477.	4.4	4
54	A Bayesian approach to an interlaboratory comparison. Chemometrics and Intelligent Laboratory Systems, 2015, 141, 94-99.	3.5	3

#	Article	IF	CITATIONS
55	Handling Overdispersion in CRONUS-Earth Intercomparison Measurements: A Bayesian Approach. Radiocarbon, 2017, 59, 1133-1145.	1.8	2
56	The Transport History of Alluvial Fan Sediment Inferred From Multiple Geochronometers. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006096.	2.8	1
57	Tandem dating methods constrain late Holocene glacier advances, southern Coast Mountains, British Columbia. Quaternary Science Reviews, 2021, 274, 107282.	3.0	1
58	Reconciling the apparent absence of a Last Glacial Maximum alpine glacial advance, Yukon Territory, Canada, through cosmogenic beryllium-10 and carbon-14 measurements. Geochronology, 2022, 4, 311-322.	2.5	1
59	Corrigendum to "Deglaciation of Pope Glacier implies widespread early Holocene ice sheet thinning in the Amundsen Sea sector of Antarctica―[Earth & Planetary Science Letters 548 (2020) 116501]. Earth and Planetary Science Letters, 2021, 576, 117221.	4.4	0
60	Review article: Existing and potential evidence for Holocene grounding-line retreat and readvance in Antarctica. , 0 , , .		0