Hisayo Yamane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6723635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional and Expressional Analyses of <i>PmDAM</i> Genes Associated with Endodormancy in Japanese Apricot. Plant Physiology, 2011, 157, 485-497.	4.8	219
2	A Pollen-Expressed Gene for a Novel Protein with an F-box Motif that is Very Tightly Linked to a Gene for S-RNase in Two Species of Cherry, Prunus cerasus and P. avium. Plant and Cell Physiology, 2003, 44, 764-769.	3.1	181
3	Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. Journal of Experimental Botany, 2011, 62, 3481-3488.	4.8	162
4	Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sexual Plant Reproduction, 2004, 16, 235-243.	2.2	139
5	Suppression Subtractive Hybridization and Differential Screening Reveals Endodormancy-associated Expression of an SVP/AGL24-type MADS-box Gene in Lateral Vegetative Buds of Japanese Apricot. Journal of the American Society for Horticultural Science, 2008, 133, 708-716.	1.0	108
6	Apple whole genome sequences: recent advances and new prospects. Horticulture Research, 2019, 6, 59.	6.3	77
7	Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. Journal of Experimental Botany, 2003, 54, 2431-2437.	4.8	70
8	Overexpression of Prunus DAM6 inhibits growth, represses bud break competency of dormant buds and delays bud outgrowth in apple plants. PLoS ONE, 2019, 14, e0214788.	2.5	69
9	Molecular Basis of Self-(in)compatibility and Current Status of S-genotyping in Rosaceous Fruit Trees. Japanese Society for Horticultural Science, 2009, 78, 137-157.	0.8	64
10	Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry. Sexual Plant Reproduction, 2005, 17, 289-296.	2.2	63
11	Self-compatibility and incompatibility in tetraploid sour cherry (Prunus cerasus L.). Sexual Plant Reproduction, 2002, 15, 39-46.	2.2	62
12	The use of the S haplotype-specific F-box protein gene, SFB, as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot (Prunus mume). Theoretical and Applied Genetics, 2003, 107, 1357-1361.	3.6	56
13	Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Scientia Horticulturae, 2011, 129, 844-848.	3.6	53
14	Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break. Tree Physiology, 2006, 26, 1559-1563.	3.1	52
15	Regulation of Bud Dormancy and Bud Break in Japanese Apricot (Prunus mume Siebold ^ ^amp; Zucc.) and Peach [Prunus persica (L.) Batsch]: A Summary of Recent Studies. Japanese Society for Horticultural Science, 2014, 83, 187-202.	0.8	50
16	Diversity of <i>S</i> -RNase genes and <i>S</i> -haplotypes in Japanese plum (<i>Prunus salicina</i> Lindl.). Journal of Horticultural Science and Biotechnology, 2002, 77, 658-664.	1.9	47
17	Cultivar discrimination of litchi fruit images using deep learning. Scientia Horticulturae, 2020, 269, 109360.	3.6	46
18	Simultaneous down-regulation of <i>DORMANCY-ASSOCIATED MADS-box6</i> and <i>SOC1</i> during dormancy release in Japanese apricot (<i>Prunus mume</i>) flower buds. Journal of Horticultural Science and Biotechnology, 2016, 91, 476-482.	1.9	42

HISAYO YAMANE

#	Article	IF	CITATIONS
19	Determination of <i>S-haplotypes</i> of Japanese plum (<i>Prunus salicina</i> Lindl.) cultivars by PCR and cross-pollination tests. Journal of Horticultural Science and Biotechnology, 2003, 78, 315-318.	1.9	35
20	Characterization of SLFL1, a pollen-expressed F-box gene located in the Prunus S locus. Sexual Plant Reproduction, 2008, 21, 113-121.	2.2	35
21	Comparative Analyses of Dormancy-associated MADS-box Genes, PpDAM5 and PpDAM6, in Low- and High-chill Peaches (Prunus persica L.). Japanese Society for Horticultural Science, 2011, 80, 276-283.	0.8	35
22	Identification of QTLs controlling chilling and heat requirements for dormancy release and bud break in Japanese apricot (Prunus mume). Tree Genetics and Genomes, 2018, 14, 1.	1.6	35
23	Determining the S-genotypes of several sweet cherry cultivars based on PCR-RFLP analysis. Journal of Horticultural Science and Biotechnology, 2000, 75, 562-567.	1.9	33
24	<i>Se</i> -haplotype confers self-compatibility in Japanese plum (<i>Prunus salicina</i> Lindl.). Journal of Horticultural Science and Biotechnology, 2005, 80, 760-764.	1.9	31
25	Two Novel Self-compatible S Haplotypes in Peach (Prunus persica). Japanese Society for Horticultural Science, 2014, 83, 203-213.	0.8	30
26	Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry. Horticulture Research, 2021, 8, 67.	6.3	30
27	454-Pyrosequencing of the Transcriptome in Leaf and Flower Buds of Japanese Apricot (Prunus mume) Tj ETQq 239-250.	1 1 0.7843 0.8	14 rgBT /Ove 29
28	RNA-sequencing Analysis Identifies Genes Associated with Chilling-mediated Endodormancy Release in Apple. Journal of the American Society for Horticultural Science, 2018, 143, 194-206.	1.0	21
29	Targeted mutagenesis of <i>CENTRORADIALIS</i> using CRISPR/Cas9 system through the improvement of genetic transformation efficiency of tetraploid highbush blueberry. Journal of Horticultural Science and Biotechnology, 2021, 96, 153-161.	1.9	21
30	Functional and expressional analyses of apple <i>FLC-</i> like in relation to dormancy progress and flower bud development. Tree Physiology, 2021, 41, 562-570.	3.1	19
31	Custom Microarray Analysis for Transcript Profiling of Dormant Vegetative Buds of Japanese Apricot during Prolonged Chilling Exposure. Japanese Society for Horticultural Science, 2014, 83, 1-16.	0.8	16
32	Genomic insight into the developmental history of southern highbush blueberry populations. Heredity, 2021, 126, 194-205.	2.6	14
33	Plant dormancy research: from environmental control to molecular regulatory networks. Tree Physiology, 2021, 41, 523-528.	3.1	14
34	<scp>H3K4me3</scp> plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. Plant Journal, 2022, 111, 1015-1031.	5.7	13
35	Comparative Mapping of the <i>ASTRINGENCY</i> Locus Controlling Fruit Astringency in Hexaploid Persimmon (<i>Diospyros kaki</i> Thunb.) with the Diploid <i>D.Âlotus</i> Reference Genome. Horticulture Journal, 2018, 87, 315-323.	0.8	11
	Characterization of a Novel Self-compatible S3′ Haplotype Leads to the Development of a Universal PCR		

36 Marker for Two Distinctly Originated Self-compatible S haplotypes in Japanese Apricot (Prunus mume) Tj ETQq0 0 00.gBT /Overlock 10 Ti

HISAYO YAMANE

#	Article	IF	CITATIONS
37	Blooming Date Predictions Based on Japanese Apricot â€~Nanko' Flower Bud Responses to Temperatures during Dormancy. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 366-370.	1.0	9
38	Differences in Physiological Characteristics and Gene Expression Levels in Fruits between Japanese Persimmon (<i>Diospyros kaki</i> Thunb.) â€~Hiratanenashi' and Its Small Fruit Mutant â€~Totsutanenashi'. Horticulture Journal, 2016, 85, 306-314.	0.8	8
39	How Is Global Warming Affecting Fruit Tree Blooming? "Flowering (Dormancy) Disorder―in Japanese Pear (Pyrus pyrifolia) as a Case Study. Frontiers in Plant Science, 2021, 12, 787638.	3.6	8
40	Characterization of Japanese Apricot (Prunus mume) Floral Bud Development Using a Modified BBCH Scale and Analysis of the Relationship between BBCH Stages and Floral Primordium Development and the Dormancy Phase Transition. Horticulturae, 2021, 7, 142.	2.8	7
41	The Relationship Between a Maleness-associated Region in <i>Diospyros lotus</i> L. and Maleness of Persimmon (<i>D. kaki</i> Thunb.) Cultivars. Horticultural Research (Japan), 2015, 14, 121-126.	0.1	7
42	Genome-Wide Identification of Loci Associated With Phenology-Related Traits and Their Adaptive Variations in a Highbush Blueberry Collection. Frontiers in Plant Science, 2021, 12, 793679.	3.6	7
43	Quantitative analysis of auxin metabolites in lychee flowers. Bioscience, Biotechnology and Biochemistry, 2021, 85, 467-475.	1.3	4
44	Insights into the Physiological and Molecular Mechanisms Underlying Highbush Blueberry Fruit Growth Affected by the Pollen Source. Horticulture Journal, 2022, 91, 140-151.	0.8	4
45	Expression Analysis of Endodormancy and Flowering-related Genes in Greenhouse-cultivated Flowering Disorder Trees of Japanese pear (<i>Pyrus pyrifolia</i> Nakai) â€~Kosui'. Horticulture Journal, 2021, 90, 38-47.	0.8	1
46	Characterization of Auxin Metabolism in the Ovaries of the Lychee (<i>Litchi chinensis</i>) â€~Salathiel'. Horticulture Journal, 2022, 91, 302-311.	0.8	1
47	Functional Genes in Bud Dormancy and Impacts on Plant Breeding. Compendium of Plant Genomes, 2019, , 101-117.	0.5	0
48	Young PIs in Agricultural Science. Ikushugaku Kenkyu, 2016, 18, 85-91.	0.3	0