Jinyoung Chun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6723406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile Synthesis of Nb ₂ O ₅ @Carbon Core–Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS Nano, 2015, 9, 7497-7505.	14.6	411
2	Advanced Hybrid Supercapacitor Based on a Mesoporous Niobium Pentoxide/Carbon as High-Performance Anode. ACS Nano, 2014, 8, 8968-8978.	14.6	380
3	Highâ€Performance Sodiumâ€lon Hybrid Supercapacitor Based on Nb ₂ O ₅ @Carbon Core–Shell Nanoparticles and Reduced Graphene Oxide Nanocomposites. Advanced Functional Materials, 2016, 26, 3711-3719.	14.9	363
4	Highly Improved Rate Capability for a Lithium-Ion Battery Nano-Li4Ti5O12 Negative Electrode via Carbon-Coated Mesoporous Uniform Pores with a Simple Self-Assembly Method. Advanced Functional Materials, 2011, 21, 4349-4357.	14.9	263
5	Mesoporous Ge/GeO ₂ /Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility. ACS Nano, 2015, 9, 5299-5309.	14.6	159
6	Block Copolymer Directed Ordered Mesostructured TiNb ₂ O ₇ Multimetallic Oxide Constructed of Nanocrystals as High Power Li-Ion Battery Anodes. Chemistry of Materials, 2014, 26, 3508-3514.	6.7	154
7	General Synthesis of N-Doped Macroporous Graphene-Encapsulated Mesoporous Metal Oxides and Their Application as New Anode Materials for Sodium-Ion Hybrid Supercapacitors. Advanced Functional Materials, 2017, 27, 1603921.	14.9	118
8	TiO2 nanodisks designed for Li-ion batteries: a novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy and Environmental Science, 2013, 6, 2932.	30.8	97
9	Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic. Chemosphere, 2012, 89, 1230-1237.	8.2	76
10	Ammonium Fluoride Mediated Synthesis of Anhydrous Metal Fluoride–Mesoporous Carbon Nanocomposites for High-Performance Lithium Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 35180-35190.	8.0	62
11	Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells. Carbon, 2010, 48, 4563-4565.	10.3	60
12	Sorption of Pb(II) and Cu(II) onto multi-amine grafted mesoporous silica embedded with nano-magnetite: Effects of steric factors. Journal of Hazardous Materials, 2012, 239-240, 183-191.	12.4	47
13	Mesoporous carbon host material for stable lithium metal anode. Nanoscale, 2020, 12, 11818-11824.	5.6	47
14	Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk. Sustainability, 2020, 12, 10683.	3.2	47
15	Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk. Journal of Industrial and Engineering Chemistry, 2020, 81, 135-143.	5.8	40
16	Various Synthetic Methods for Oneâ€Đimensional Semiconductor Nanowires/Nanorods and Their Applications in Photovoltaic Devices. European Journal of Inorganic Chemistry, 2010, 2010, 4251-4263.	2.0	38
17	Recent advances in the synthesis of mesoporous materials and their application to lithium-ion batteries and hybrid supercapacitors. Korean Journal of Chemical Engineering, 2021, 38, 227-247.	2.7	37
18	A small-strain niobium nitride anode with ordered mesopores for ultra-stable potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 3119-3127.	10.3	36

JINYOUNG CHUN

#	Article	IF	CITATIONS
19	Rational design of Li ₃ VO ₄ @carbon core–shell nanoparticles as Li-ion hybrid supercapacitor anode materials. Journal of Materials Chemistry A, 2017, 5, 20969-20977.	10.3	34
20	Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. Journal of Materials Chemistry, 2011, 21, 6713.	6.7	32
21	Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate. Materials Letters, 2021, 283, 128765.	2.6	31
22	Highly mesoporous silicon derived from waste iron slag for high performance lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 21899-21906.	10.3	30
23	A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte. Journal of Materials Chemistry A, 2021, 9, 7774-7781.	10.3	25
24	One pot synthesis of mesoporous boron nitride using polystyrene-b-poly(ethylene oxide) block copolymer. RSC Advances, 2015, 5, 6528-6535.	3.6	21
25	Two-Stage Continuous Process for the Extraction of Silica from Rice Husk Using Attrition Ball Milling and Alkaline Leaching Methods. Sustainability, 2021, 13, 7350.	3.2	17
26	Residual silica removal and nanopore generation on industrial waste silicon using ammonium fluoride and its application to lithium-ion battery anodes. Chemical Engineering Journal, 2021, 419, 129389.	12.7	16
27	A study of the palladium size effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen using highly uniform palladium nanoparticles supported on carbon. Korean Journal of Chemical Engineering, 2012, 29, 1115-1118.	2.7	13
28	Nitrogen and Fluorine Co-doped Activated Carbon for Supercapacitors. Journal of Electrochemical Science and Technology, 2017, 8, 338-343.	2.2	13
29	Determination of the Adsorption Isotherms of Hydrogen and Deuterium Isotopes on a Ptâ^'Ir Alloy in LiOH Solutions Using the Phase-Shift Method and Correlation Constants. Journal of Chemical & Engineering Data, 2010, 55, 5598-5607.	1.9	11
30	Review on the Determination of Frumkin, Langmuir, and Temkin Adsorption Isotherms at Electrode/Solution Interfaces Using the Phase-Shift Method and Correlation Constants. Korean Chemical Engineering Research, 2016, 54, 734-745.	0.2	11
31	Nickel fluoride (NiF2)/porous carbon nanocomposite synthesized via ammonium fluoride (NH4F) treatment for lithium-ion battery cathode applications. Journal of Power Sources, 2022, 521, 230935.	7.8	10
32	Using waste Li ion batteries as cathodes in rechargeable Li–liquid batteries. Physical Chemistry Chemical Physics, 2013, 15, 7036.	2.8	9
33	Determination of Adsorption Isotherms of Hydroxide and Deuteroxide on Ptâ^'Ir Alloy in LiOH Solutions Using the Phase-Shift Method and Correlation Constants. Journal of Chemical & Engineering Data, 2010, 55, 3825-3833.	1.9	8
34	Determination of Adsorption Isotherms of Overpotentially Deposited Hydrogen on Platinum and Iridium in KOH Aqueous Solution Using the Phase-Shift Method and Correlation Constants. Journal of Chemical & Engineering Data, 2010, 55, 2363-2372.	1.9	8
35	Alkaline Fractionation and Subsequent Production of Nano-Structured Silica and Cellulose Nano-Fibrils for the Comprehensive Utilization of Rice Husk. Sustainability, 2021, 13, 1951.	3.2	8
36	Solvothermal synthesis of sodium cobalt fluoride (NaCoF3) nanoparticle clusters. Materials Letters, 2017, 207, 89-92.	2.6	7

JINYOUNG CHUN

#	Article	IF	CITATIONS
37	Synthesis of Sodium Cobalt Fluoride/Reduced Graphene Oxide (NaCoF3/rGO) Nanocomposites and Investigation of Their Electrochemical Properties as Cathodes for Li-Ion Batteries. Materials, 2021, 14, 547.	2.9	7
38	Isotopic Shifts of the Frumkin and Temkin Adsorption Isotherms of H and D at Pt/Alkaline Solution Interfaces: Analysis Using the Phase-Shift Method. Journal of the Electrochemical Society, 2019, 166, H243-H249.	2.9	6
39	Eco-friendly and facile synthesis of size-controlled spherical silica particles from rice husk. Nanoscale Advances, 2021, 3, 6965-6973.	4.6	6
40	Alkali Extraction to Detoxify Rice Husk-Derived Silica and Increase Its Biocompatibility. ACS Sustainable Chemistry and Engineering, 2022, 10, 7811-7817.	6.7	6
41	Reversibility of Lithium″on–Air Batteries Using Lithium Intercalation Compounds as Anodes. ChemPlusChem, 2015, 80, 349-353.	2.8	5
42	Determination of the Adsorption Isotherms of Overpotentially Deposited Hydrogen on a Ptâ^'Ir Alloy in H ₂ SO ₄ Aqueous Solution Using the Phase-Shift Method and Correlation Constants. Journal of Chemical & Engineering Data, 2011, 56, 251-258.	1.9	4
43	Microwaveâ€ e ssisted solvothermal synthesis of sodium metal fluoride (Na <i>_x</i> MF <i>_y</i>) nanopowders. Journal of the American Ceramic Society, 2019, 102, 6475-6479.	3.8	4
44	Determination of equilibrium isotope effect at Pd/alkaline solution (regular and heavy water) interfaces by the phase-shift method and its comparison with other Pt-group metals. International Journal of Hydrogen Energy, 2021, 46, 8125-8131.	7.1	4
45	Facile Preparation of Magnetite-Incorporated Polyacrylonitrile-Derived Carbons for Li-Ion Battery Anodes. ACS Applied Energy Materials, 2022, 5, 1262-1270.	5.1	4
46	Transition effect of under- and over-potentially deposited hydrogen and negative resistance at a poly-Rh/alkaline aqueous solution interface. International Journal of Hydrogen Energy, 2020, 45, 1429-1434.	7.1	3
47	ON/OFF Switchable Nanocomposite Membranes for Separations. Polymers, 2020, 12, 2415.	4.5	3
48	Determination of the Frumkin and Temkin Adsorption Isotherms of Underpotentially Deposited Hydrogen at Pt Group Metal Interfaces Using the Standard Gibbs Energy of Adsorption and Correlation Constants. Journal of the Korean Electrochemical Society, 2013, 16, 211-216.	0.1	3
49	Simplified Synthesis of Spherical Silica Microparticles from Rice Husk. Chemical Engineering and Technology, 2022, 45, 381-384.	1.5	3
50	On-demand solid-state artistic ultrahigh areal energy density microsupercapacitors. Energy Storage Materials, 2022, 47, 569-578.	18.0	3
51	Non-graphitizable resin coating on polyacrylonitrile-based polyHIPE to prepare high surface area graphitic carbon foam and the investigation of its electrochemical performance as an anode of lithium-ion batteries. Journal of Alloys and Compounds, 2021, 873, 159771.	5.5	2
52	Dual Behavior of Dispersed Ni Nanoparticles for Hydrogen Evolution Reaction at the Interface of Ni/Alkaline Solution. Journal of the Electrochemical Society, 2021, 168, 096512.	2.9	2
53	Extraordinary Equilibrium Isotope Effects of H to D at the Interfaces of Ni and Ti/Alkaline Solutions. Journal of the Electrochemical Society, 2022, 169, 056506.	2.9	1