
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6723096/publications.pdf Version: 2024-02-01

ΡΑΘτέρ Βλοι

#	Article	IF	CITATIONS
1	Heterogeneous Catalytic Method for the Copper(II)-Catalysed Addition of H-Phosphinates and Secondary Phosphine Oxides to Phenylacetylene. Catalysis Letters, 2022, 152, 1100-1108.	2.6	3
2	Efficient Synthesis of Acylated, Dialkyl α-Hydroxy-Benzylphosphonates and Their Anticancer Activity. Molecules, 2022, 27, 2067.	3.8	5
3	Enantioselective Cyclopropanation of 2 yanoâ€3â€arylacrylates Using Carbohydrateâ€Based Crown Ethers. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
4	Towards more accurate solubility measurements with real time monitoring: a carvedilol case study. New Journal of Chemistry, 2021, 45, 11618-11625.	2.8	7
5	Synthesis of C3-Symmetric Cinchona-Based Organocatalysts and Their Applications in Asymmetric Michael and Friedel–Crafts Reactions. Symmetry, 2021, 13, 521.	2.2	3
6	Synthesis of Methyl 4,6-Di-O-ethyl-α-d-glucopyranoside-Based Azacrown Ethers and Their Effects in Asymmetric Reactions. Molecules, 2021, 26, 4668.	3.8	2
7	Three-component synthesis, utilization and biological activity of phosphinoyl-functionalized isoindolinones. Organic and Biomolecular Chemistry, 2021, 19, 8754-8760.	2.8	6
8	Enantioseparation of <i>P</i> -Stereogenic Secondary Phosphine Oxides and Their Stereospecific Transformation to Various Tertiary Phosphine Oxides and a Thiophosphinate. Journal of Organic Chemistry, 2021, 86, 14493-14507.	3.2	11
9	Synthesis of Novel Crown Ether-Squaramides and Their Application as Phase-Transfer Catalysts. Molecules, 2021, 26, 6542.	3.8	4
10	Synthesis of xylal―and arabinalâ€based crown ethers and their application as asymmetric phase transfer catalysts. Chirality, 2020, 32, 107-119.	2.6	7
11	The Synthesis of Hydrobenzoin-Based Monoaza Crown Ethers and Their Application as Recyclable Enantioselective Catalysts. Catalysis Letters, 2020, 150, 930-938.	2.6	5
12	Synthesis and Applications of Cinchona Squaramideâ€Modified Poly(Glycidyl Methacrylate) Microspheres as Recyclable Polymerâ€Grafted Enantioselective Organocatalysts. Chemistry - A European Journal, 2020, 26, 13513-13522.	3.3	6
13	Optical Resolution of Dimethyl α-Hydroxy-Arylmethylphosphonates via Diastereomer Complex Formation Using Calcium Hydrogen O,O′-Dibenzoyl-(2R,3R)-Tartrate; X-Ray Analysis of the Complexes and Products. Symmetry, 2020, 12, 758.	2.2	3
14	Scalable Enantiomeric Separation of Dialkylâ€Arylphosphine Oxides Based on Host–Guest Complexation with TADDOLâ€Derivatives, and their Recovery. European Journal of Organic Chemistry, 2020, 2020, 1840-1852.	2.4	10
15	Enantioselective cyclopropanation of conjugated cyanosulfones using carbohydrate-based crown ether catalysts. Tetrahedron, 2020, 76, 130965.	1.9	15
16	Preparation of 2-phospholene oxides by the isomerization of 3-phospholene oxides. Beilstein Journal of Organic Chemistry, 2020, 16, 818-832.	2.2	3
17	Preparation of Enantiomerically Enriched P-Stereogenic Dialkyl-Arylphosphine Oxides via Coordination Mediated Optical Resolution. Symmetry, 2020, 12, 215.	2.2	4
18	Preparation of Palladium(II) Complexes of 1-substituted-3-phospholene Ligands and their Evaluation as Catalysts in Hydroalkoxycarbonylation. Current Organic Chemistry, 2020, 23, 2873-2879.	1.6	2

#	Article	IF	CITATIONS
19	Synthesis and Complexation Studies of Optically Active Aza- and Diazacrown Ethers Containing a Pyrene Fluorophore Unit. Periodica Polytechnica: Chemical Engineering, 2019, 64, 20-36.	1.1	1
20	New bis-rhodium complex with a bidentate 3-phosphino-1,2,3,6-tetrahydrophosphinine P-ligand. Mendeleev Communications, 2019, 29, 573-574.	1.6	1
21	A Mechanistic Study on the Tautomerism of H-Phosphonates, H-Phosphinates and Secondary Phosphine Oxides. Molecules, 2019, 24, 3859.	3.8	24
22	Synthesis and enantioselective transport studies of both enantiomers of new chiral proton-ionizable crown ethers containing a diarylphosphinic acid unit. Tetrahedron, 2019, 75, 1275-1281.	1.9	5
23	Resolution of acyclic phosphine oxides with TADDOL- and tartaric acid derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 556-557.	1.6	0
24	Synthesis of chiral crown ethers derived from d-galactose and their application in enantioselective reactions. Tetrahedron, 2019, 75, 3993-4004.	1.9	24
25	Synthesis and application of novel carbohydrate-based ammonium and triazolium salts. Synthetic Communications, 2019, 49, 2388-2400.	2.1	9
26	Isomerization and application of phospholene oxides. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 610-613.	1.6	2
27	The preparation and application of optically active organophosphorus compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 591-594.	1.6	3
28	Theoretical investigation on the tautomerization mechanism of phosphinic acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 359-360.	1.6	7
29	Preparation of enantiopure 1â€isopentylâ€3â€methylâ€3â€phospholene 1â€oxide via the formation of diastereomeric complexes. Heteroatom Chemistry, 2018, 29, .	0.7	0
30	Access to Fluorazones by Intramolecular Dehydrative Cyclization of Aromatic Tertiary Amides: A Synthetic and Mechanistic Study. Journal of Organic Chemistry, 2018, 83, 2282-2292.	3.2	20
31	The resolution of acyclic <i>P</i> â€stereogenic phosphine oxides via the formation of diastereomeric complexes: A case study on ethylâ€{2â€methylphenyl)â€phenylphosphine oxide. Chirality, 2018, 30, 509-522.	2.6	12
32	4. Resolution of phosphine oxides. , 2018, , 66-90.		3
33	Dynamic kinetic resolution of 1-substituted-3-methyl-3-phospholene oxides via the formation of diastereomeric alkoxyphospholenium salts. Tetrahedron, 2018, 74, 5850-5857.	1.9	5
34	A novel preparation of chlorophospholenium chlorides and their application in the synthesis of phospholene boranes. Tetrahedron Letters, 2017, 58, 458-461.	1.4	7
35	Green chemical syntheses and applications within organophosphorus chemistry. Structural Chemistry, 2017, 28, 431-443.	2.0	10
36	Synthesis, Characterization, and Application of Platinum(II) Complexes Incorporating Racemic and Optically Active 4-Chloro-5-Methyl-1-Phenyl-1,2,3,6-Tetrahydrophosphinine Ligand. Heteroatom Chemistry, 2016, 27, 91-101.	0.7	10

#	Article	IF	CITATIONS
37	Preparation of P-heterocyclic phosphine boranes and optically active phosphine oxides via phosphonium salts. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1656-1657.	1.6	2
38	The resolution and application of P-stereogenic phosphine oxides. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1459-1461.	1.6	2
39	Milestones in microwave-assisted organophosphorus chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1416-1420.	1.6	4
40	Selecting Resolving Agents with Respect to Their Eutectic Compositions. Chirality, 2016, 28, 230-234.	2.6	4
41	Effect of ultrasound-assisted crystallization in the diastereomeric salt resolution of tetramisole enantiomers in ternary system with O,O′-dibenzoyl-(2R,3R)-tartaric acid. Ultrasonics Sonochemistry, 2016, 32, 8-17.	8.2	9
42	An aspect of selecting resolving agents: The role of differences in molecule length in diastereomeric salt resolutions. Separation Science and Technology, 2016, 51, 727-732.	2.5	2
43	The pH-dependency of Diastereomeric Salt Resolutions with Amphoteric Resolving Agents. Journal of Chemical Research, 2016, 40, 21-25.	1.3	4
44	Resolution of P-stereogenic P-heterocycles via the formation of diastereomeric molecular and coordination complexes (a review). Dalton Transactions, 2016, 45, 1823-1842.	3.3	46
45	The Synthesis of Bioâ€Based Flameâ€Retarded Epoxyâ€Precursors. Macromolecular Symposia, 2015, 352, 46-50.	0.7	1
46	Regularities between Separations of Enantiomeric and Diastereoisomeric Mixtures. Prediction of the Efficiency of Diastereomeric/ Enantiomeric Separations on the Basis of Behaviour of Enantiomeric Mixtures. Periodica Polytechnica: Chemical Engineering, 2015, 59, 26-37.	1.1	4
47	Environmentally Friendly Chemistry with Organophosphorus Syntheses in Focus. Periodica Polytechnica: Chemical Engineering, 2015, 59, 82-95.	1.1	6
48	Novel Platinum(II)—Complexes Incorporating Optically Active P-Heterocycles as the Ligands. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 821-823.	1.6	1
49	A Case Study on the Resolution of the 1â€ <i>i</i> â€Butylâ€3â€methylâ€3â€phospholene 1â€Oxide via Diastereo Complex Formation Using TADDOL Derivatives and via Diastereomeric Coordination Complexes Formed from the Calcium Salts of <i>O</i> , <i>O</i> ′â€Diaroylâ€{2 <i>R</i> ,3 <i>R</i>)â€ŧartaric Acids. Heteroatom Chemistry. 2015. 26. 79-90.	omeric 0.7	11
50	Non-linear effects in the enantiomeric separation of mandelic acid using the mixtures of amphoteric resolving agents. Tetrahedron: Asymmetry, 2015, 26, 721-731.	1.8	5
51	The effect of the eutectic composition on the outcome of kinetically and thermodynamically controlled resolutions that are based on the formation of diastereomers. Tetrahedron: Asymmetry, 2015, 26, 377-384.	1.8	15
52	A study on the optical resolution of 1-isopropyl-3-methyl-3-phospholene 1-oxide and its use in the synthesis of borane and platinum complexes. Journal of Organometallic Chemistry, 2015, 797, 140-152.	1.8	11
53	Platinum(II) Complexes Incorporating Racemic and Optically Active 1-Aryl-3- phospholene P-Ligands as Potential Catalysts in Hydroformylation. Current Organic Chemistry, 2014, 18, 1529-1538.	1.6	15
54	Resolution of 1-n-propoxy-3-methyl-3-phospholene 1-oxide by diastereomeric complex formation using TADDOL derivatives and calcium salts of O,O′-dibenzoyl-(2R,3R)- or O,O′-di-p-toluoyl-(2R,3R)-tartaric acid. Tetrahedron: Asymmetry, 2014, 25, 318-326.	1.8	13

#	Article	IF	CITATIONS
55	The effect of SDE on the separation of diastereomeric salts: a case study for the resolution of mandelic acid derivatives with Pregabalin. Tetrahedron: Asymmetry, 2014, 25, 1095-1099.	1.8	13
56	Resolution of 1â€ <i>n</i> â€Butylâ€3â€Methylâ€3â€Phospholene 1â€Oxide With TADDOL Derivatives and Calciu of <i>O</i> , <i>O</i> 'a€Dibenzoylâ€(2 <i>R</i> ,3 <i>R</i>)â€or <i>O</i> , <i>O</i> 'a€diâ€ <i>p</i> â€Toluoylâ€(2 <i>R</i> ,3 <i>R</i>)â€tartaric Acid. Chirality, 2014, 26, 174-182.	ım Salts 2.6	14
57	Platinum(II) complexes incorporating racemic and optically active 1-alkyl-3-phospholene P-ligands: Synthesis, stereostructure, NMR properties and catalytic activity. Journal of Organometallic Chemistry, 2014, 751, 306-313.	1.8	28
58	Preparation of Optically Active Six-Membered P-Heterocycles: A 3-Phosphabicyclo[3.1.0] hexane 3-oxide, a 1,2-Dihydrophosphinine 1-oxide, and a 1,2,3,6-Tetrahydrophosphinine 1-oxide. Heteroatom Chemistry, 2013, 24, 179-186.	0.7	13
59	Resolution of 5- and 6-Membered P-Heterocycles: Racemic and Optically Active Platinum(II)-3-Phospholene Complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 36-38.	1.6	2
60	Resolution of P-Heterocycles with Tartaric Acid Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 792-793.	1.6	2
61	Platinum(II) complexes incorporating racemic and optically active 1-alkyl-3-phospholenes and 1-propyl-phospholane P-ligands: Synthesis, stereostructure, NMR properties and catalytic activity. Journal of Organometallic Chemistry, 2011, , .	1.8	2
62	A practical and efficient method for the resolution of 3â€phospholene 1â€oxides via coordination complex formation ¹ . Chirality, 2010, 22, 699-705.	2.6	19
63	Newer developments in the green synthesis of tertiary phosphine oxides, phosphinates, phosphonates and their derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-6.	1.6	0
64	Resolution of aryl-H-phosphinates applied in the synthesis of P-stereogenic compounds including a BrÃ,nsted acid NMR solvating agent. Organic Chemistry Frontiers, 0, , .	4.5	1