
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6722756/publications.pdf Version: 2024-02-01

Μ7 Ρεμμαν

#	Article	IF	CITATIONS
1	Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety, 2015, 119, 186-197.	2.9	641
2	Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 2019, 214, 269-277.	4.2	567
3	The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 2015, 22, 8148-8162.	2.7	539
4	Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research, 2016, 23, 17859-17879.	2.7	529
5	Cadmium minimization in wheat: A critical review. Ecotoxicology and Environmental Safety, 2016, 130, 43-53.	2.9	436
6	Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials, 2017, 322, 2-16.	6.5	408
7	Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 2016, 23, 2230-2248.	2.7	366
8	Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety, 2017, 140, 37-47.	2.9	360
9	A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 2017, 182, 90-105.	4.2	352
10	Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environmental Science and Pollution Research, 2015, 22, 15416-15431.	2.7	322
11	Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution, 2018, 242, 1518-1526.	3.7	304
12	Cadmium phytoremediation potential of Brassica crop species: A review. Science of the Total Environment, 2018, 631-632, 1175-1191.	3.9	275
13	Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety, 2018, 148, 825-833.	2.9	235
14	Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution, 2019, 248, 358-367.	3.7	230
15	Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environmental Science and Pollution Research, 2015, 22, 16897-16906.	2.7	212
16	Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 2019, 140, 1-8.	2.8	195
17	Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environmental Pollution, 2017, 227, 560-568.	3.7	194
18	Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicology and Environmental Safety, 2021, 212, 111978.	2.9	186

#	Article	IF	CITATIONS
19	Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere, 2020, 238, 124681.	4.2	183
20	Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 2018, 25, 25668-25680.	2.7	180
21	Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety, 2016, 133, 218-225.	2.9	178
22	Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere, 2017, 187, 35-42.	4.2	175
23	Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. Journal of Environmental Management, 2018, 206, 676-683.	3.8	166
24	Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicology and Environmental Safety, 2019, 173, 156-164.	2.9	145
25	Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environmental Science and Pollution Research, 2020, 27, 4958-4968.	2.7	144
26	A critical review on the effects of zinc at toxic levels of cadmium in plants. Environmental Science and Pollution Research, 2019, 26, 6279-6289.	2.7	134
27	Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	129
28	Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere, 2017, 174, 515-523.	4.2	128
29	A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	123
30	Remediation of heavy metal contaminated soils by using Solanum nigrum : A review. Ecotoxicology and Environmental Safety, 2017, 143, 236-248.	2.9	118
31	Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environmental Geochemistry and Health, 2017, 39, 259-277.	1.8	116
32	Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere, 2020, 258, 127352.	4.2	110
33	Synthesis of Potential Biologically Active 1,2-Benzothiazin-3-yl-quinazolin-4(3H)-ones. Chemical and Pharmaceutical Bulletin, 2006, 54, 1175-1178.	0.6	108
34	Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environmental Pollution, 2018, 241, 557-565.	3.7	106
35	Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil–plant system. Environmental Earth Sciences, 2016, 75, 1.	1.3	104
36	A facile synthesis of novel biologically active 4-hydroxy-N′-(benzylidene)-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxides. European Journal of Medicinal Chemistry, 2009, 44, 1311-1316.	2.6	99

#	Article	IF	CITATIONS
37	Split application of silicon in cadmium (Cd) spiked alkaline soil plays a vital role in decreasing Cd accumulation in rice (Oryza sativa L.) grains. Chemosphere, 2019, 226, 454-462.	4.2	93
38	Anti-oxidant and anti-bacterial activities of novel N ′-arylmethylidene-2-(3, 4-dimethyl-5,) Tj ETQq0 0 0 rgBT / Chemistry, 2010, 45, 698-704.	Overlock 1 2.6	0 Tf 50 707 T 91
39	Silicon nutrition lowers cadmium content of wheat cultivars by regulating transpiration rate and activity of antioxidant enzymes. Environmental Pollution, 2018, 242, 126-135.	3.7	86
40	The importance of evaluating metal exposure and predicting human health risks in urban–periurban environments influenced by emerging industry. Chemosphere, 2016, 150, 79-89.	4.2	83
41	Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals. Chemosphere, 2019, 227, 72-81.	4.2	80
42	Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress. Environmental Science and Pollution Research, 2018, 25, 20691-20699.	2.7	76
43	Role of Zinc–Lysine on Growth and Chromium Uptake in Rice Plants under Cr Stress. Journal of Plant Growth Regulation, 2018, 37, 1413-1422.	2.8	73
44	Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environmental Science and Pollution Research, 2016, 23, 22443-22453.	2.7	70
45	Characterizing pollution indices and children health risk assessment of potentially toxic metal(oid)s in school dust of Lahore, Pakistan. Ecotoxicology and Environmental Safety, 2020, 190, 110059.	2.9	70
46	Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes. Chemosphere, 2020, 246, 125809.	4.2	65
47	Farmyard manure alone and combined with immobilizing amendments reduced cadmium accumulation in wheat and rice grains grown in field irrigated with raw effluents. Chemosphere, 2018, 199, 468-476.	4.2	63
48	Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-A review. Journal of Cleaner Production, 2021, 310, 127548.	4.6	62
49	Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress. Environmental Science and Pollution Research, 2017, 24, 5521-5529.	2.7	60
50	Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere, 2020, 244, 125548.	4.2	58
51	Effects of nanoparticles on trace element uptake and toxicity in plants: A review. Ecotoxicology and Environmental Safety, 2021, 221, 112437.	2.9	57
52	Efficiency of various sewage sludges and their biochars in improving selected soil properties and growth of wheat (Triticum aestivum). Journal of Environmental Management, 2018, 223, 607-613.	3.8	56
53	Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environmental Science and Pollution Research, 2018, 25, 10848-10856.	2.7	55
54	Effect of green and chemically synthesized titanium dioxide nanoparticles on cadmium accumulation in wheat grains and potential dietary health risk: A field investigation. Journal of Hazardous Materials, 2021, 415, 125585.	6.5	55

#	Article	IF	CITATIONS
55	Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. Journal of Soils and Sediments, 2019, 19, 3749-3759.	1.5	52
56	Alleviating Effect of Calcium on Nickel Toxicity in Rice. Clean - Soil, Air, Water, 2015, 43, 901-909.	0.7	50
57	Effects of selenium on the uptake of toxic trace elements by crop plants: A review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2531-2566.	6.6	50
58	Anti-oxidant, anti-fungal and anti-leishmanial activities of novel 3-[4-(1H-imidazol-1-yl) phenyl]prop-2-en-1-ones. European Journal of Medicinal Chemistry, 2009, 44, 4654-4660.	2.6	49
59	Microwave assisted synthesis and structure–activity relationship of 4-hydroxy-N′-[1-phenylethylidene]-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides as anti-microbial agents. European Journal of Medicinal Chemistry, 2011, 46, 2368-2377.	2.6	47
60	Genetic Variation in Cadmium Accumulation and Tolerance among Wheat Cultivars at the Seedling Stage. Communications in Soil Science and Plant Analysis, 2016, 47, 554-562.	0.6	46
61	Efficiency of various silicon rich amendments on growth and cadmium accumulation in field grown cereals and health risk assessment. Chemosphere, 2020, 244, 125481.	4.2	46
62	Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with Cd. Ecotoxicology and Environmental Safety, 2021, 215, 112139.	2.9	46
63	Lead Toxicity in Cereals and Its Management Strategies: a Critical Review. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	45
64	Biochar-induced immobilization and transformation of silver-nanoparticles affect growth, intracellular-radicles generation and nutrients assimilation by reducing oxidative stress in maize. Journal of Hazardous Materials, 2020, 390, 121976.	6.5	45
65	Effect of acidified biochar on bioaccumulation of cadmium (Cd) and rice growth in contaminated soil. Environmental Technology and Innovation, 2020, 19, 101015.	3.0	44
66	Comparative effects of biochar-nanosheets and conventional organic-amendments on health risks abatement of potentially toxic elements via consumption of wheat grown on industrially contaminated-soil. Chemosphere, 2018, 192, 161-170.	4.2	40
67	Effect of composted organic amendments and zinc oxide nanoparticles on growth and cadmium accumulation by wheat; a life cycle study. Environmental Science and Pollution Research, 2020, 27, 23926-23936.	2.7	37
68	Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Chemosphere, 2010, 79, 652-658.	4.2	36
69	Reclamation and salt leaching efficiency for tile drained salineâ€sodic soil using marginal quality water for irrigating rice and wheat crops. Land Degradation and Development, 2012, 23, 1-9.	1.8	35
70	Potential of Duckweed (<i>Lemna minor</i>) for the Phytoremediation of Landfill Leachate. Journal of Chemistry, 2018, 2018, 1-9.	0.9	35
71	SYNTHESIS OF NOVEL ANTI-BACTERIAL 2,1-BENZOTHIAZINE 2,2-DIOXIDES DERIVED FROM METHYL ANTHRANILATE. Journal of the Chilean Chemical Society, 2011, 56, 527-531.	0.5	33
72	Contrasting Effects of Farmyard Manure (FYM) and Compost for Remediation of Metal Contaminated Soil. International Journal of Phytoremediation, 2015, 17, 613-621.	1.7	31

#	Article	IF	CITATIONS
73	Evaluating the health risks of potentially toxic elements through wheat consumption in multi-industrial metropolis of Faisalabad, Pakistan. Environmental Science and Pollution Research, 2017, 24, 26646-26657.	2.7	31
74	Investigating the uptake and acquisition of potentially toxic elements in plants and health risks associated with the addition of fresh biowaste amendments to industrially contaminated soil. Land Degradation and Development, 2017, 28, 2596-2607.	1.8	30
75	Effects of biochar on growth, photosynthesis, and chromium (Cr) uptake in Brassica rapa L. under Cr stress. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	30
76	Environmental application of nanomaterials: A promise to sustainable future. Comprehensive Analytical Chemistry, 2019, , 1-54.	0.7	29
77	Combined use of zinc nanoparticles and co-composted biochar enhanced wheat growth and decreased Cd concentration in grains under Cd and drought stress: A field study. Environmental Technology and Innovation, 2021, 23, 101518.	3.0	29
78	Crystallographic Studies of Dehydration Phenomenon in Methyl 3-hydroxy-2-methyl-1,1,4-trioxo-1,2,3,4-tetrahydro-1λ 6-benzo[e][1,2]thiazine-3-carboxylate. Journal of Chemical Crystallography, 2013, 43, 671-676.	0.5	28
79	Nano-biofortification of different crops to immune against COVID-19: A review. Ecotoxicology and Environmental Safety, 2021, 222, 112500.	2.9	26
80	Carbon dioxide activated biochar-clay mineral composite efficiently removes ciprofloxacin from contaminated water - Reveals an incubation study. Journal of Cleaner Production, 2022, 332, 130079.	4.6	26
81	Contrasting Effects of Organic and Inorganic Amendments on Reducing Lead Toxicity in Wheat. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 642-647.	1.3	24
82	Effect of gibberellic acid and titanium dioxide nanoparticles on growth, antioxidant defense system and mineral nutrient uptake in wheat. Ecotoxicology and Environmental Safety, 2021, 221, 112436.	2.9	24
83	Maize seedling phosphorus nutrition: Allocation of remobilized seed phosphorus reserves and external phosphorus uptake to seedling roots and shoots during early growth stages. Plant and Soil, 2013, 371, 327-338.	1.8	22
84	Comparison of Low-Molecular-Weight Organic Acids and Ethylenediaminetetraacetic Acid to Enhance Phytoextraction of Heavy Metals by Maize. Communications in Soil Science and Plant Analysis, 2014, 45, 42-52.	0.6	22
85	Effect of gibberellic acid on growth, biomass, and antioxidant defense system of wheat (Triticum) Tj ETQq1 1 (2020, 27, 33809-33820.	0.784314 rg 2.7	BT /Overlock 22
86	Phytoremediation of Pb-Contaminated Soils Using Synthetic Chelates. , 2015, , 397-414.		21
87	Integrated risk assessment of potentially toxic elements and particle pollution in urban road dust of megacity of Pakistan. Human and Ecological Risk Assessment (HERA), 2020, 26, 1810-1831.	1.7	20
88	Responses of Plants to Iron Oxide Nanoparticles. , 2018, , 221-238.		19
89	Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize. Chemosphere, 2021, 266, 128980.	4.2	19
90	Effect of biochar and compost on cadmium bioavailability and its uptake by wheat–rice cropping system irrigated with untreated sewage water: a field study. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	19

#	Article	IF	CITATIONS
91	Chemical investigations of Si-rich organic and inorganic amendments and correlation analysis between different chemical composition and Si contents in amendments. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	18
92	Potassium ferrite nanoparticles on DAP to formulate slow release fertilizer with auxiliary nutrients. Ecotoxicology and Environmental Safety, 2021, 215, 112148.	2.9	18
93	Remediating Cadmium-Contaminated Soils by Growing Grain Crops Using Inorganic Amendments. , 2015, , 367-396.		17
94	Opportunities and challenges in the remediation of metal-contaminated soils by using tobacco (Nicotiana tabacum L.): a critical review. Environmental Science and Pollution Research, 2019, 26, 18053-18070.	2.7	17
95	Foliar Application of Phosphorus Enhances Photosynthesis and Biochemical Characteristics of Maize under Drought Stress. Phyton, 2021, 90, 503-514.	0.4	17
96	Nitrogen and Phosphorus Use Efficiency in Agroecosystems. , 2020, , 213-257.		17
97	Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	16
98	Salinity and its tolerance strategies in plants. , 2020, , 47-76.		16
99	Foliar spray of silicon nanoparticles improved the growth and minimized cadmium (Cd) in wheat under combined Cd and water-limited stress. Environmental Science and Pollution Research, 2022, 29, 77321-77332.	2.7	16
100	Restoration of Degraded Soil for Sustainable Agriculture. , 2020, , 31-81.		15
101	Pod shattering in canola reduced by mitigating drought stress through silicon application and molecular approaches-A review. Journal of Plant Nutrition, 2023, 46, 101-128.	0.9	15
102	Combined effects of green manure and zinc oxide nanoparticles on cadmium uptake by wheat (Triticum) Tj ETQq	000 rgB1	[/Overlock 1
103	Effect of different seed priming agents on chromium accumulation, oxidative defense, glyoxalase system and mineral nutrition in canola (Brassica napus L.) cultivars. Environmental Pollution, 2022, 309, 119769.	3.7	15
104	High Ni Levels in Soil Can Modify Growth Performance and Mineral Status of Wheat Cultivars. Clean - Soil, Air, Water, 2014, 42, 1263-1271.	0.7	14
105	A field study investigating the potential use of phosphorus combined with organic amendments on cadmium accumulation by wheat and subsequent rice. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	14
106	Regulation of drought stress in plants. , 2020, , 77-104.		14
107	Morphological and Physiological Responses of Plants to Cadmium Toxicity. , 2019, , 47-72.		13

Cadmium-Induced Imbalance in Nutrient and Water Uptake by Plants. , 2019, , 299-326.

13

#	Article	IF	CITATIONS
109	Synthesis of Sulfonamide Tethered (Hetero)aryl ethylidenes as Potential Inhibitors of P2X Receptors: A Promising Way for the Treatment of Pain and Inflammation. ACS Omega, 2021, 6, 25062-25075.	1.6	12
110	Green and eco-friendly synthesis of TiO ₂ nanoparticles and their application for removal of cadmium from wastewater: reaction kinetics study. Zeitschrift Fur Physikalische Chemie, 2022, 236, 637-657.	1.4	12
111	Solanum nigrum L.: A Novel Hyperaccumulator for the Phyto-Management of Cadmium Contaminated Soils. , 2019, , 451-477.		11
112	2-(Benzenesulfonamido)acetic acid. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2283-o2284.	0.2	11
113	Arsenic concentrations in soil, water, and rice grains of rice-growing areas of Punjab, Pakistan: multivariate statistical analysis. Environmental Monitoring and Assessment, 2022, 194, 346.	1.3	11
114	ADSORPTION STUDIES OF POMEGRANATE PEEL ACTIVATED CHARCOAL FOR NICKEL (II) ION. Journal of the Chilean Chemical Society, 2015, 60, 2642-2645.	0.5	10
115	Cerium oxide nanoparticles: Advances in synthesis, prospects and application in agro-ecosystem. Comprehensive Analytical Chemistry, 2019, 87, 209-250.	0.7	10
116	High residual sodium carbonate water in the Indian subcontinent: concerns, challenges and remediation. International Journal of Environmental Science and Technology, 2021, 18, 3257-3272.	1.8	10
117	N-Cyclohexyl-N-ethylbenzenesulfonamide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2867-o2867.	0.2	10
118	Phytodiversity for Metals in Plants Grown in Urban Agricultural Lands Irrigated with Untreated City Effluent. Communications in Soil Science and Plant Analysis, 2012, 43, 1181-1201.	0.6	9
119	Degraded Soils: Origin, Types and Management. , 2016, , 23-65.		9
120	Application of Gypsum or Sulfuric Acid Improves Physiological Traits and Nutritional Status of Rice in Calcareous Saline-Sodic Soils. Journal of Soil Science and Plant Nutrition, 2022, 22, 1846-1858.	1.7	9
121	6-Bromo-1-methyl-4-[2-(4-methylbenzylidene)hydrazinylidene]-3H-2λ6,1-benzothiazine-2,2-dione. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2092-o2092.	0.2	8
122	Phytoremediation of Metal-Contaminated Soils Using Organic Amendments. , 2015, , 503-523.		8
123	Cadmium immobilization in the soil and accumulation by spinach (Spinacia oleracea) depend on biochar types under controlled and field conditions. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	8
124	Organic Manures for Cadmium Tolerance and Remediation. , 2019, , 19-67.		8
125	Effect of Organic Amendments in Soil on Physiological and Biochemical Attributes of Vachellia nilotica and Dalbergia sissoo under Saline Stress. Plants, 2022, 11, 228.	1.6	8
126	4-Hydrazinylidene-1-methyl-3 <i>H</i> -2λ ⁶ ,1-benzothiazine-2,2-dione. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2038-o2038.	0.2	7

#	Article	IF	CITATIONS
127	Sources and Composition of Waste Water: Threats to Plants and Soil Health. , 2016, , 349-370.		7
128	Effect of biochars, biogenic, and inorganic amendments on dissolution and kinetic release of phytoavailable silicon in texturally different soils under submerged conditions. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	7
129	Cadmium Stabilization and Redox Transformation Mechanism in Maize Using Nanoscale Zerovalent-Iron-Enriched Biochar in Cadmium-Contaminated Soil. Plants, 2022, 11, 1074.	1.6	7
130	Methyl 2-allyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3077-o3077.	0.2	6
131	4-{[(4-Methylphenyl)sulfonyl]amino}benzoic acid. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1018-o1018.	0.2	6
132	Biochar Is a Potential Source of Silicon Fertilizer. , 2019, , 225-238.		6
133	Wastewater Irrigation-Sourced Plant Nutrition: Concerns and Prospects. , 2020, , 417-434.		6
134	Marginal-Quality Water Use as an Ameliorant for Tile-Drained Saline-Sodic Soils in a Rice-Wheat Production System. , 2013, , 295-311.		6
135	Fate of Micronutrients in Alkaline Soils. , 2020, , 577-613.		6
136	Biofortification of Cereals with Zinc and Iron: Recent Advances and Future Perspectives. , 2020, , 615-646.		6
137	MICROWAVE ASSISTED SYNTHESIS OF BIOLOGICALLY ACTIVE 4-HYDROXY-7V-(PHENYLCARBONYL)-2H-1,2-BENZOTHIAZINE-3-CARBOHYDRAZIDE 1,1-DIOXIDE DERIVATIVES. Journal of the Chilean Chemical Society, 2012, 57, 1492-1496.	0.5	5
138	Cadmium (Cd) concentration in wheat (Triticum aestivum) grown in Cd-spiked soil varies with the doses and biochar feedstock. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	5
139	Use of Poor-quality Water for Agricultural Production. , 2019, , 769-783.		5
140	Inorganic Amendments for the Remediation of Cadmium-Contaminated Soils. , 2019, , 113-141.		5
141	Sorption mechanisms of lead on soil-derived black carbon formed under varying cultivation systems. Chemosphere, 2020, 261, 128220.	4.2	5
142	Effect of three different types of biochars on eco-physiological response of important agroforestry tree species under salt stress. International Journal of Phytoremediation, 2021, 23, 1412-1422.	1.7	5
143	1-Ethyl-N′-[(E)-4-hydroxybenzylidene]-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o860-o861.	0.2	5
144	Methyl 2-ethyl-4-hydroxy-2 <i>H</i> -1,2-benzothiazine-3-carboxylate 1,1-dioxide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 01070-01070.	0.2	4

#	Article	IF	CITATIONS
145	3-[4-(Acetamido)benzenesulfonamido]benzoic acid. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o25-o26.	0.2	4
146	Efficient Green Synthesis of N′-Benzylidene-2-(2-Fluorobiphenyl) Propanehydrazides: Crystal Structure and Anti-Oxidant Potential. Journal of Chemical Research, 2015, 39, 668-673.	0.6	4
147	1-[4-(1 <i>H</i> -Imidazol-1-yl)Phenyl]-3-Phenylprop-2-En-1-Ones – a Potential Pharmacophore Bearing Anti-Leishmanial Activity. Journal of Chemical Research, 2016, 40, 199-204.	0.6	4
148	Recent Progress of NanotoxicologyÂinÂPlants. , 2018, , 143-174.		4
149	N′-[(E)-Benzylidene]-1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3152-o3153.	0.2	4
150	Mitigation of Climate Change Through Carbon Sequestration in Agricultural Soils. , 2020, , 87-118.		4
151	Iron bio-fortification and heavy metal/(loid)s contamination in cereals: successes, issues, and challenges. Crop and Pasture Science, 2022, 73, 877-895.	0.7	4
152	6-Bromo-4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2078-o2078.	0.2	3
153	Effects of Rare Earth Oxide Nanoparticles on Plants. , 2018, , 239-275.		3
154	Environment Friendly Synthesis of <i>N</i> ′-(1,3-Diphenylallylidene)-1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydra Crystal Structure and Their Anti-oxidant Potential. Chemical and Pharmaceutical Bulletin, 2019, 67, 1191-1200.	azides: 0.6	3
155	Comparative residual effect of activated carbon and other organic amendments on immobilization and phytoavailability nickel and other metals to Egyptian Clover (<i>Trifolium alexandrinum</i>) in contaminated soil. International Journal of Phytoremediation, 2020, 22, 687-693.	1.7	3
156	Sufficiency and toxicity limits of metallic oxide nanoparticles in the biosphere. , 2021, , 145-221.		3
157	Methyl 2-benzyl-4-hydroxy-1,1-dioxo-1,2,3,4-tetrahydro-1λ ⁶ ,2-benzothiazine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1588-o1589.	0.2	3
158	Chapter 2 Role of Silicon under Nutrient Deficiency. , 2016, , 29-46.		3
159	Role of nanotechnology in enhancing crop production and produce quality. , 2022, , 703-764.		3
160	(E)-3-(3-Chlorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1346-o1347.	0.2	2
161	Methyl 2-butyl-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1663-o1663.	0.2	2
162	Comparison of Fine and Coarse Rice Varieties for Nickel Accumulation and Growth Response at Different Levels ofÂNickel. Clean - Soil, Air, Water, 2021, 49, 2000336.	0.7	2

#	Article	IF	CITATIONS
163	A Review of Veterinary Antibiotic Pollution in the Agro-Environment of Pakistan: Alarm Bells Are Ringing. International Journal of Agriculture and Biology, 2021, 25, 795-804.	0.2	2
164	Remediation of organic pollutants by Brassica species. , 2021, , 689-700.		2
165	N-Benzyl-N-cyclohexylbenzenesulfonamide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3053-o3053.	0.2	2
166	Effect of Use of Different Anthelmintics (Piperazine Citrate and Ivermectine) on Blood Profile of Infested Poultry (Commercial and Rural Layers). Advances in Zoology and Botany, 2016, 4, 1-5.	0.2	2
167	Transmission Specificity and Coinfection of Mastrevirus with Begomovirus. International Journal of Agriculture and Biology, 2017, 19, 105-113.	0.2	2
168	(2E)-3-(2-Chloro-6-methyl-3-quinolyl)-1-(1-naphthyl)prop-2-en-1-one. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o761-o761.	0.2	1
169	Methyl 2-methyl-4-(oxiran-2-ylmethoxy)-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o333-o333.	0.2	1
170	WHEAT ASSIMILATION OF NICKEL AND ZINC ADDED IN IRRIGATION WATER AS AFFECTED BY ORGANIC MATTER. Journal of Plant Nutrition, 2010, 34, 27-33.	0.9	1
171	Methyl 4-hydroxy-2-isopropyl-1,1-dioxo-2H-1,2-benzothiazine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1823-o1824.	0.2	1
172	N′-[(E)-1-(4-Bromophenyl)ethylidene]-4-hydroxy-2-methyl-1,1-dioxo-2H-1,2-benzothiazine-3-carbohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2613-o2613.	0.2	1
173	Methyl 4-hydroxy-1,1-dioxo-2-(2-phenylethyl)-2H-1λ6,2-benzothiazine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3445-o3445.	0.2	1
174	(3S,4Z)-3-Chloro-1-methyl-4-[(2E)-(3-methylbenzylidene)hydrazinylidene]-3,4-dihydro-1H-2,1-benzothiazine 2,2-dioxide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o338-o338.	0.2	1
175	Methyl 2-(but-3-enyl)-4-hydroxy-1,1-dioxo-2H-1λ6,2-benzothiazine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1926-o1926.	0.2	1
176	2-(3,4-Dimethyl-5,5-dioxo-2H,4H-pyrazolo[4,3-c][1,2]benzothiazin-2-yl)acetic acid. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1970-o1971.	0.2	1
177	1-Methyl-4-[1-(1-phenylethylidene)-hydrazin-2-ylidene]-3,4-dihydro-1 <i>H</i> -2λ ⁶ ,1-benzothiazine-2 Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2100-o2100.	.,2-dione. 0.2	1
178	Propan-2-yl 2-(1,1,3-trioxo-2,3-dihydro-1λ6,2-benzothiazol-2-yl)acetate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2761-o2761.	0.2	1
179	Solubilization and Acquisition of Phosphorus from Sparingly Soluble Phosphorus Sources and Differential Growth Response ofBrassicaCultivars Exposed to Phosphorus-Stress Environment. Communications in Soil Science and Plant Analysis, 2013, 44, 1242-1258.	0.6	1
180	2-Methanesulfonamidobenzoic acid. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2453-o2453.	0.2	1

#	Article	IF	CITATIONS
181	Methyl 2-(benzenesulfonamido)acetate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1204-o1204.	0.2	1
182	Role of legumes in phytoremediation of heavy metals. , 2022, , 345-360.		1
183	2-Imino-3-(2-nitrophenyl)-1,3-thiazolidin-4-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2564-o2564.	0.2	0
184	Methyl 4-hydroxy-2-methoxycarbonylmethyl-1,1-dioxo-1,2-dihydro-1λ6,2-benzothiazine-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2527-o2527.	0.2	0
185	6-Bromo-4-(2-cyclohexylidenehydrazin-1-ylidene)-1-methyl-2,2-dioxo-3,4-dihydro-1 <i>H</i> -2λ ⁶ ,1-be Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2088-o2089.	nzothiazir 0.2	^{ne} o
186	2-{(E)-[(2Z)-(3-Chloro-1-methyl-2,2-dioxo-3,4-dihydro-1H-2,1-benzothiazin-4-ylidene)hydrazinylidene]methyl}phen Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o307-o307.	ol.2	0
187	Methyl 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o630-o631.	0.2	0
188	Ethyl 2-(3,4-dimethyl-5,5-dioxo-1H,4H-benzo[e]pyrazolo[4,3-c][1,2]thiazin-1-yl)acetate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3010-o3010.	0.2	0
189	Plant Nutrients and Cadmium Stress Tolerance. , 2019, , 319-333.		0
190	Microbial associations in ecological reclamation and restoration of marginal lands. , 2021, , 239-266.		0
191	2-Methyl-5-nitrobenzenesulfonamide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o136-o136.	0.2	0
192	3,6-Dimethyl-o-phenylenedimethanol. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o189-o189.	0.2	0
193	Mitigation of Climate Change Impacts through Treatment and Management of Low Quality Water for Irrigation in Pakistan. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 84-101.	0.3	0
194	Synthesis of iron doped zeolite nanocomposite: one step treatment of drinking water from biological, inorganic and organic contaminants. , 0, 93, 120-130.		0
195	In vitro Response of Bougainvillea Explants and their Antioxidant Enzymatic Activities Treated with Naphthyl Acetic Acid-Based Synthetic Plant Growth Promoters. Polish Journal of Environmental Studies, 2018, 27, 1707-1716.	0.6	0
196	Treatment and Management of Low Quality Water for Irrigation. , 2018, , 267-282.		0
197	Growth and Acclimatization Response of Sunflower Plantlets Treated with Naphthyl Acetic Acid-Based Environment Friendly Plant Growth Promoters. Polish Journal of Environmental Studies, 2019, 28, 1897-1907.	0.6	0
198	Mitigation of Climate Change Impacts Through Treatment and Management of Low Quality Water for Irrigation in Pakistan. , 2020, , 1181-1198.		0