Alejandro Baeza

List of Publications by Citations

Source: https://exaly.com/author-pdf/6722739/alejandro-baeza-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61
papers

2,582
citations

h-index

50
g-index

74
ext. papers

2,896
ext. citations

6.4
avg, IF

L-index

#	Paper	IF	Citations
61	Smart drug delivery through DNA/magnetic nanoparticle gates. <i>ACS Nano</i> , 2011 , 5, 1259-66	16.7	340
60	Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. <i>Chemistry of Materials</i> , 2012 , 24, 517-524	9.6	285
59	Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. <i>Expert Opinion on Drug Delivery</i> , 2015 , 12, 319-37	8	202
58	Aldehyde selective Wacker oxidations of phthalimide protected allylic amines: a new catalytic route to beta3-amino acids. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9473-4	16.4	119
57	Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. <i>Expert Opinion on Drug Delivery</i> , 2017 , 14, 783-	786	93
56	Beyond Traditional Hyperthermia: In Vivo Cancer Treatment with Magnetic-Responsive Mesoporous Silica Nanocarriers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 12518-12525	9.5	80
55	Magnetic-Responsive Release Controlled by Hot Spot Effect. <i>Langmuir</i> , 2015 , 31, 12777-82	4	76
54	Janus Mesoporous Silica Nanoparticles for Dual Targeting of Tumor Cells and Mitochondria. <i>ACS Applied Materials & District Applied & District A</i>	9.5	75
53	Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor. <i>Small</i> , 2012 , 8, 2053-9	11	75
52	Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. <i>Biomaterials Science</i> , 2016 , 4, 803-13	7.4	74
51	Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. <i>Biomaterials Science</i> , 2017 , 5, 353-377	7.4	67
50	Hybrid Collagenase Nanocapsules for Enhanced Nanocarrier Penetration in Tumoral Tissues. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Ap</i>	9.5	64
49	Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxic antitumoral therapy. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5746-5752	7.3	63
48	A novel visible light responsive nanosystem for cancer treatment. <i>Nanoscale</i> , 2017 , 9, 15967-15973	7.7	60
47	Effect of surfactants on the performance of tubular and spherical micromotors - a comparative study. <i>RSC Advances</i> , 2014 , 4, 20334-20340	3.7	50
46	Hybrid Enzyme-Polymeric Capsules/Mesoporous Silica Nanodevice for In Situ Cytotoxic Agent Generation. <i>Advanced Functional Materials</i> , 2014 , 24, 4625-4633	15.6	42
45	Dynamics of Novel Photoactive AgCl Microstars and Their Environmental Applications. <i>ChemNanoMat</i> , 2017 , 3, 65-71	3.5	40

(2020-2019)

44	Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. <i>Expert Opinion on Drug Delivery</i> , 2019 , 16, 1095-1112	8	38	
43	Mesoporous Silica Nanoparticles Decorated with Carbosilane Dendrons as New Non-viral Oligonucleotide Delivery Carriers. <i>Chemistry - A European Journal</i> , 2015 , 21, 15651-66	4.8	38	
42	Multifunctional Protocells for Enhanced Penetration in 3D Extracellular Tumoral Matrices. <i>Chemistry of Materials</i> , 2018 , 30, 112-120	9.6	38	
41	Targeting strategies for improving the efficacy of nanomedicine in oncology. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 168-181	3	36	
40	In-vivo behavior of Si-hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing. Journal of Biomedical Materials Research - Part A, 2013 , 101, 2038-48	5.4	36	
39	A new targeting agent for the selective drug delivery of nanocarriers for treating neuroblastoma. Journal of Materials Chemistry B, 2015 , 3, 4831-4842	7.3	34	
38	Nanotechnological Strategies for Protein Delivery. <i>Molecules</i> , 2018 , 23,	4.8	33	
37	Improving catalase-based propelled motor endurance by enzyme encapsulation. <i>Nanoscale</i> , 2014 , 6, 89	0 7./ 13	33	
36	Biotinylation of silicon-doped hydroxyapatite: a new approach to protein fixation for bone tissue regeneration. <i>Acta Biomaterialia</i> , 2010 , 6, 743-9	10.8	29	
35	Synthesis of Polydopamine-Like Nanocapsules via Removal of a Sacrificial Mesoporous Silica Template with Water. <i>Chemistry - A European Journal</i> , 2017 , 23, 2753-2758	4.8	27	
34	Towards the Development of Smart 3D "gated scaffolds" for on-command delivery. Small, 2014, 10, 485	59 .1 64	26	
33	Polydopamine-like Coatings as Payload Gatekeepers for Mesoporous Silica Nanoparticles. <i>ACS Applied Materials & Discourse Materials </i>	9.5	25	
32	Reaction of bromomethylazoles and tosylmethyl isocyanide. A novel heterocyclization method for the synthesis of the core of marine alkaloids variolins and related azolopyrimidines. <i>Journal of Organic Chemistry</i> , 2004 , 69, 4974-83	4.2	25	
31	Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 484003	1.8	24	
30	Heterocyclizations with tosylmethyl isocyanide derivatives. A new approach to substituted azolopyrimidines. <i>Journal of Organic Chemistry</i> , 2005 , 70, 4879-82	4.2	23	
29	Design of thermoresponsive polymeric gates with opposite controlled release behaviors. <i>RSC Advances</i> , 2016 , 6, 42510-42516	3.7	19	
28	Heating at the Nanoscale through Drug-Delivery Devices: Fabrication and Synergic Effects in Cancer Treatment with Nanoparticles. <i>Small Methods</i> , 2018 , 2, 1800007	12.8	18	
27	Tumor Targeted Nanocarriers for Immunotherapy. <i>Molecules</i> , 2020 , 25,	4.8	18	

26	Targeted Chemo-Photothermal Therapy: A Nanomedicine Approximation to Selective Melanoma Treatment. <i>Particle and Particle Systems Characterization</i> , 2018 , 35, 1800148	3.1	18
25	Double Sequential Encrypted Targeting Sequence: A New Concept for Bone Cancer Treatment. <i>Chemistry - A European Journal</i> , 2017 , 23, 7174-7179	4.8	17
24	Bacteria as Nanoparticles Carrier for Enhancing Penetration in a Tumoral Matrix Model. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901942	4.6	17
23	Selective palladium-catalyzed amination of the heterocyclic core of variolins. <i>Tetrahedron Letters</i> , 2007 , 48, 2597-2601	2	17
22	Application of Selective Palladium-Mediated Functionalization of the Pyrido[3?,2?:4,5]pyrrolo[1,2-c]pyrimidine Heterocyclic System for the Total Synthesis of Variolin B and Deoxyvariolin B. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, 5607-5618	3.2	16
21	Palladium-mediated CN, CL, and CD functionalization of azolopyrimidines: a new total synthesis of variolin B. <i>Tetrahedron Letters</i> , 2008 , 49, 4073-4077	2	15
20	Design of Smart Nanomaterials for Drug and Gene Delivery. <i>Journal of Biomaterials and Tissue Engineering</i> , 2011 , 1, 6-29	0.3	15
19	Mesoporous Silica Nanoparticles as Theranostic Antitumoral Nanomedicines. <i>Pharmaceutics</i> , 2020 , 12,	6.4	14
18	Novel environmentally benign procedures for the synthesis of styryl dyes. <i>Dyes and Pigments</i> , 2008 , 77, 550-555	4.6	13
17	Smart Mesoporous Silica Nanocarriers for Antitumoral Therapy. <i>Current Topics in Medicinal Chemistry</i> , 2015 , 15, 2306-15	3	13
16	Molecular Scaffolds as Double-Targeting Agents For the Diagnosis and Treatment of Neuroblastoma. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3067-3072	16.4	13
15	Collagenase nanocapsules: An approach to fibrosis treatment. <i>Acta Biomaterialia</i> , 2018 , 74, 430-438	10.8	12
14	Inorganic Porous Nanoparticles for Drug Delivery in Antitumoral Therapy. <i>Biotechnology Journal</i> , 2021 , 16, e2000150	5.6	12
13	Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal?. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 2714-2725	7.3	10
12	Nanomotors for Nucleic Acid, Proteins, Pollutants and Cells Detection. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	9
11			
11	Targeted Mesoporous Silica Nanocarriers in Oncology. Current Drug Targets, 2018, 19, 213-224	3	9
10	Targeted Mesoporous Silica Nanocarriers in Oncology. <i>Current Drug Targets</i> , 2018 , 19, 213-224 Mesoporous Silica Nanoparticles for Drug Delivery and Controlled Release Applications 2015 , 1309-136		8

LIST OF PUBLICATIONS

8	Ceramic Nanoparticles for Cancer Treatment 2014 , 421-455		5
7	Molecular Scaffolds as Double-Targeting Agents For the Diagnosis and Treatment of Neuroblastoma. <i>Angewandte Chemie</i> , 2019 , 131, 3099-3104	3.6	4
6	Synthesis of Polydopamine-Like Nanocapsules via Removal of a Sacrificial Mesoporous Silica Template with Water. <i>Chemistry - A European Journal</i> , 2017 , 23, 2733-2733	4.8	3
5	Magnetically responsive polymers for drug delivery applications 2018 , 143-168		3
4	Ceramic Smart Drug Delivery Nanomaterials 2014 , 23-48		2
3	Nano- and Microscale Drug Delivery Approaches for Therapeutic Immunomodulation. <i>ChemNanoMat</i> , 2021 , 7, 773-788	3.5	1
2	Evaluation of the penetration process of fluorescent collagenase nanocapsules in a 3D collagen gel. <i>Acta Biomaterialia</i> , 2021 , 121, 263-274	10.8	1
1	Janus-Type Mesoporous Silica Nanoparticles for Sequential Tumoral Cell and Mitochondria Targeting. <i>Methods in Molecular Biology</i> , 2021 , 2275, 341-361	1.4	