
Yoshiaki Adachi è¶³ç«< å-"æ~-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6722184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of Cylindrical Magnetic Shielding Performance by Considering the Magnetic Field Strength Inside the Material. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	5
2	Calibration of a Coil Array Geometry Using an X-Ray Computed Tomography. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	2
3	Assessment of thoracic spinal cord electrophysiological activity through magnetoneurography. Clinical Neurophysiology, 2022, 133, 39-47.	1.5	7
4	Reduction of Magnetic Noise Originating from a Cryocooler of a Magnetoencephalography System Using Mobile Reference Sensors. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	2
5	Assessing carpal tunnel syndrome with magnetoneurography. Clinical Neurophysiology, 2022, 139, 1-8.	1.5	4
6	Magnetoneurography as a novel functional imaging technique for the ulnar nerve at the elbow. Clinical Neurophysiology, 2022, 138, 153-162.	1.5	6
7	Prediction of Magnetic Shield Box Performance by Considering Magnetic Field Strength of Inside Material. IEEJ Transactions on Fundamentals and Materials, 2022, 142, 257-262.	0.2	0
8	DEVELOPMENT OF A MAGNETICALLY SHIELDED ROOM EQUIPPED WITH AN AUTOMATIC DOOR FOR BIOMAGNETIC MEASUREMENTS. All Journal of Technology and Design, 2022, 28, 727-732.	0.3	1
9	Evaluation of Directional Dependence of Sensitivity for Room-Temperature Magnetic Flux Sensors With Wide Sensitivity Region. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	1
10	Evaluation of Heat Treatment of Mu-Metal Based on Permeability Under Very-Low-Frequency Micromagnetic Fields. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	5
11	Prediction of magnetic shield plate performance using permeability in alternating micromagnetic fields. AIP Advances, 2021, 11, .	1.3	4
12	Noninvasive measurement of sensory action currents in the cervical cord by magnetospinography. Clinical Neurophysiology, 2021, 132, 382-391.	1.5	7
13	Clinical Application of SQUID Magnetometers for the Spinal Cord and the Peripheral Nerve. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2021, 56, 82-86.	0.1	0
14	Multichannel SQUID Magnetoneurograph System for Functional Imaging of Spinal Cords and Peripheral Nerves. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	6
15	Visualization of electrophysiological activity at the carpal tunnel area using magnetoneurography. Clinical Neurophysiology, 2020, 131, 951-957.	1.5	14
16	Visualization of electrical activity in the cervical spinal cord and nerve roots after ulnar nerve stimulation using magnetospinography. Clinical Neurophysiology, 2020, 131, 2460-2468.	1.5	7
17	Evaluation of neural activity by magnetospinography with 3D sensors. Clinical Neurophysiology, 2020, 131, 1252-1266.	1.5	9
18	Evaluation Method for Magnetic Shield Material using Incremental Permeability against Very Low Frequency Micro Magnetic Field Fluctuation. IEEJ Transactions on Fundamentals and Materials, 2020, 140, 331-337.	0.2	4

#	Article	IF	CITATIONS
19	Calibration of Room Temperature Magnetic Sensor Array for Biomagnetic Measurement. IEEE Transactions on Magnetics, 2019, 55, 1-6.	2.1	22
20	Dry Phantoms With Deep Signal Sources for Magnetoencephalography. IEEE Magnetics Letters, 2019, 10, 1-5.	1.1	0
21	Novel functional imaging technique for the brachial plexus based on magnetoneurography. Clinical Neurophysiology, 2019, 130, 2114-2123.	1.5	18
22	Visualization of the electrical activity of the cauda equina using a magnetospinography system in healthy subjects. Clinical Neurophysiology, 2019, 130, 1-11.	1.5	22
23	Single Triangular Coil Used to Identify the Position and Orientation of a Subject for Biomagnetic Measurements. IEEE Magnetics Letters, 2019, 10, 1-5.	1.1	1
24	Magnetocardiography Using a Magnetoresistive Sensor Array. International Heart Journal, 2019, 60, 50-54.	1.0	17
25	Investigation of Geomagnetic Orientation Preserved in a Stain Containing Iron Compounds Using a Vector-Type SQUID Magnetometer. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-4.	1.7	Ο
26	Recent advancements in the SQUID magnetospinogram system. Superconductor Science and Technology, 2017, 30, 063001.	3.5	14
27	Magnetospinography visualizes electrophysiological activity in the cervical spinal cord. Scientific Reports, 2017, 7, 2192.	3.3	36
28	Multi-Channel SQUID Magnetospinogram System With Closed-Cycle Helium Recondensing. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	12
29	Sub-nano tesla magnetic imaging based on room-temperature magnetic flux sensors with vibrating sample magnetometry. AIP Advances, 2017, 7, 056626.	1.3	0
30	Low Noise Closed-Cycle Helium Re-Condensing for SQUID Biomagnetic Measurement System. , 2015, , .		1
31	Dry phantom for magnetoencephalography —Configuration, calibration, and contribution. Journal of Neuroscience Methods, 2015, 251, 24-36.	2.5	21
32	Magnetospinography: Instruments and Application to Functional Imaging of Spinal Cords. IEICE Transactions on Electronics, 2013, E96.C, 326-333.	0.6	7
33	Real-Time Coil Position Monitoring System for Biomagnetic Measurements. Physics Procedia, 2012, 36, 280-285.	1.2	7
34	Improvement of SQUID Magnetometer System for Extending Application of Spinal Cord Evoked Magnetic Field Measurement. IEEE Transactions on Applied Superconductivity, 2011, 21, 485-488.	1.7	21
35	SQUID-Based Low Field MRI System for Small Animals. IEEE Transactions on Applied Superconductivity, 2011, 21, 526-529.	1.7	13
36	Evaluation of an Isosceles-Triangle-Coil Phantom for Magnetoencephalography. IEEE Transactions on Magnetics, 2011, 47, 3853-3856.	2.1	6

#	Article	IF	CITATIONS
37	A SQUID System for Measurement of Spinal Cord Evoked Field of Supine Subjects. IEEE Transactions on Applied Superconductivity, 2009, 19, 861-866.	1.7	24
38	Development of Cervical Spinal Cord Evoked Magnetic Field Measurement System Using SQUID Magnetometers. IEEJ Transactions on Sensors and Micromachines, 2009, 129, 181-186.	0.1	0
39	Micro-Magnetocardiography System With a Single-Chip SQUID Magnetometer Array for QT Analysis and Diagnosis of Myocardial Injury in Small Animals. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2, 260-268.	4.0	9
40	B215 Imaging of neural electric activity from spinal cord evoked magnetic field. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2008, 2008.19, 67-68.	0.0	0
41	A 75-ch SQUID Biomagnetometer System for Human Cervical Spinal Cord Evoked Field. IEEE Transactions on Applied Superconductivity, 2007, 17, 3867-3873.	1.7	22
42	The Measurement of Spinal Cord Evoked Magnetic Fields by Vector SQUID Biomagnetometer. IEEJ Transactions on Fundamentals and Materials, 2005, 125, 85-91.	0.2	1