Jeongmin Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6722145/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Thermal partial oxidation of n-butane in a micro-flow reactor and solid oxide fuel cell stability assessment. Energy Conversion and Management, 2022, 254, 115222.	9.2	9
2	Comparison of in vitro corrosion products on CoCrMo generated via oscillatory electric fields before and after removal of proteinaceous layer. Materialia, 2022, 22, 101400.	2.7	0
3	Effects of Synthesis Gas Concentration, Composition, and Operational Time on Tubular Solid Oxide Fuel Cell Performance. Sustainability, 2022, 14, 7983.	3.2	3
4	Investigation of Rapid, Moderate Temperature Change Thermal Cycles of a Micro-Tubular Flame-Assisted Fuel Cell. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	2.1	3
5	Investigation of the effects of electrochemical reactions on complex metal tribocorrosion within the human body. Heliyon, 2021, 7, e07023.	3.2	6
6	Investigation of a Hybrid Powertrain Utilizing Solid Oxide Fuel Cells and Internal Combustion Engine for Unmanned Aerial Vehicles. , 2021, , .		0
7	The anode supported internal cathode tubular solid oxide fuel cell: Novel production of a cell geometry for combined heat and power applications. International Journal of Hydrogen Energy, 2021, 46, 37429-37439.	7.1	5
8	Micro-Tubular Solid Oxide Fuel Cell Polarization and Impedance Variation With Thin Porous Samarium-Doped Ceria and Gadolinium-Doped Ceria Buffer Layer Thickness. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	2.1	6
9	Driving electrochemical corrosion of implanted CoCrMo metal via oscillatory electric fields without mechanical wear. Scientific Reports, 2021, 11, 22366.	3.3	2
10	Investigation of microcombustion reforming of ethane/air and micro-Tubular Solid Oxide Fuel Cells. Journal of Power Sources, 2020, 450, 227606.	7.8	16
11	Impact of low concentration hydrocarbons in natural gas on thermal partial oxidation in a micro-flow reactor for solid oxide fuel cell applications. Journal of Power Sources, 2020, 477, 229007.	7.8	13
12	Novel investigation of perovskite membrane based electrochemical nitric oxide control phenomenon. Scientific Reports, 2020, 10, 18750.	3.3	5
13	Investigation of startup, performance and cycling of a residential furnace integrated with micro-tubular flame-assisted fuel cells for micro-combined heat and power. Energy, 2020, 196, 117148.	8.8	29
14	Micro-tubular flame-assisted fuel cells running methane, propane and butane: On soot, efficiency and power density. Energy, 2019, 169, 776-782.	8.8	26
15	Microcombustion for micro-tubular flame-assisted fuel cell power and heat cogeneration. Journal of Power Sources, 2019, 413, 191-197.	7.8	23
16	Rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation. Journal of Power Sources, 2018, 381, 18-25.	7.8	28
17	Micro-Tubular Flame-Assisted Fuel Cell Power Generation Running Propane and Butane. , 2018, , .		0
18	Performance investigation of a micro-tubular flame-assisted fuel cell stack with 3,000 rapid thermal cycles. Journal of Power Sources, 2018, 394, 86-93.	7.8	35

Jeongmin Ahn

#	Article	IF	CITATIONS
19	Review and analysis of fuel cell-based, micro-cogeneration for residential applications: Current state and future opportunities. Science and Technology for the Built Environment, 2017, 23, 1224-1243.	1.7	25
20	Investigation of oxygen transport membrane reactors for oxy-fuel combustion and carbon capture purposes. Proceedings of the Combustion Institute, 2017, 36, 3969-3976.	3.9	22
21	Exploring the performance of dual-phase oxygen transport membranes for carbon capture purposes. Journal of Fluid Science and Technology, 2017, 12, JFST0028-JFST0028.	0.6	1
22	Micro-tubular flame-assisted fuel cells. Journal of Fluid Science and Technology, 2017, 12, JFST0021-JFST0021.	0.6	12
23	Interfacial Impedance Studies of Multilayer Structured Electrolyte Fabricated With Solvent-Casted PEO10–LiN(CF3SO2)2 and Ceramic Li1.3Al0.3Ti1.7(PO4)3 and Its Application in All-Solid-State Lithium Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	2.1	12
24	Micro-tubular flame-assisted fuel cells running methane. International Journal of Hydrogen Energy, 2016, 41, 20670-20679.	7.1	37
25	Micro-tubular flame-assisted fuel cell stacks. International Journal of Hydrogen Energy, 2016, 41, 21489-21496.	7.1	34
26	Experimental study of oxygen transport membranes for oxy-fuel combustion reactors. Journal of Fluid Science and Technology, 2016, 11, JFST0025-JFST0025.	0.6	0
27	Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells. Journal of Visualized Experiments, 2016, , .	0.3	7
28	Performance variation with SDC buffer layer thickness. International Journal of Hydrogen Energy, 2016, 41, 9500-9506.	7.1	22
29	Performance Investigation of Dual Layer Yttria-Stabilized Zirconia–Samaria-Doped Ceria Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	2.1	18
30	Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems. Journal of Power Sources, 2016, 306, 148-151.	7.8	48
31	EFFECTS OF SINTERING TEMPERATURE ON THE PERFORMANCE OF SrSc0.1Co0.9O3-δOXYGEN SEMIPERMEABLE MEMBRANE. Brazilian Journal of Chemical Engineering, 2015, 32, 757-765.	1.3	9
32	Flame-assisted fuel cells running methane. International Journal of Hydrogen Energy, 2015, 40, 4659-4665.	7.1	38
33	Power Generation From Thermal Transpiration Based Pumping Devices. , 2014, , .		0
34	TiOX-polyanilne composite films for high-performance supercapacitors. Journal of the Korean Physical Society, 2014, 64, 182-185.	0.7	5
35	A Ceramic-Membrane-Based Methane Combustion Reactor With Tailored Function of Simultaneous Separation of Carbon Dioxide From Nitrogen. , 2014, , .		0
36	A Ceramic-Membrane-Based Methane Combustion Reactor With Tailored Function of Simultaneous Separation of Carbon Dioxide From Nitrogen. , 2014, , .		0

Jeongmin Ahn

#	Article	IF	CITATIONS
37	Thermal Transpiration Based Propulsion. , 2014, , .		0
38	A self-sustaining thermal transpiration gas pump and SOFC power generation system. Proceedings of the Combustion Institute, 2013, 34, 3327-3334.	3.9	12
39	Thermal Transpiration Based Pumping and Power Generation Devices. Journal of Thermal Science and Technology, 2013, 8, 370-379.	1.1	13
40	An Electricity and Value-Added Gases Co-Generation via Solid Oxide Fuel Cells. , 2013, , .		0
41	Single-Phase Ceramic Membranes Integrated With Combustion Processes. , 2013, , .		0
42	Performance Investigation of YSZ-SDC Solid Oxide Fuel Cells. , 2012, , .		2
43	Catalytic Combustion-Driven Thermal Transpiration Pump and Power Generation Device. , 2011, , .		0
44	Evaluation of methane-based flame fuel cell using anode supported solid oxide fuel cells. , 2011, , .		0
45	Methane-Based Flame Fuel Cell Using Anode Supported Solid Oxide Fuel Cells. , 2011, , .		1
46	Non-Propulsive Miniature Power Device Based on SOFC and Combustion-Driven Thermal Transpiration Pump. , 2011, , .		0
47	Methane-Based Flame Fuel Cell Using Anode Supported Solid Oxide Fuel Cells. , 2011, , .		0
48	Advances and challenges in the development of power-generation systems at small scales. Progress in Energy and Combustion Science, 2011, 37, 583-610.	31.2	216
49	High performance direct flame fuel cell using a propane flame. Proceedings of the Combustion Institute, 2011, 33, 3431-3437.	3.9	51
50	Nanoparticle molybdenum dioxide: A highly active catalyst for partial oxidation of aviation fuels. Applied Catalysis B: Environmental, 2010, 98, 186-192.	20.2	54
51	Demonstration of an external combustion micro-heat engine. Proceedings of the Combustion Institute, 2009, 32, 3099-3105.	3.9	41
52	Thermal Transpiration Based Micro-Scale Pumping and Power Generation Devices. , 2009, , .		2
53	A Thermally Self-Sustaining Miniature Solid Oxide Fuel Cell. Journal of Fuel Cell Science and Technology, 2009, 6, .	0.8	20
54	Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine. Journal of Power Sources, 2008, 177, 323-329.	7.8	27

JEONGMIN AHN

#	Article	IF	CITATIONS
55	Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3â^´Î´+Sm0.2Ce0.8O1.9 composite cathode. Journal of Power Sources, 2008, 179, 60-68.	7.8	89
56	Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO+SDC anode and BSCF+SDC cathode. Journal of Power Sources, 2008, 179, 640-648.	7.8	35
57	Synthesis and assessment of La0.8Sr0.2ScyMn1â^'yO3â~'î~ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte. Journal of Power Sources, 2008, 183, 471-478.	7.8	44
58	Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3â~'δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. Journal of Power Sources, 2008, 180, 15-22.	7.8	156
59	Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3â~δ cathodes prepared via electroless deposition. Electrochimica Acta, 2008, 53, 4370-4380.	5.2	85
60	Development of Combustion-Driven Thermoacoustic Engine. , 2008, , .		0
61	A High-Performance Flame Fuel Cell Using Ethanol as Fuels. , 2008, , .		0
62	A High-Performance No-Chamber Fuel Cell Operated on Flame. , 2008, , .		1
63	Effect of Ammonia Treatment on Pt Catalyst Used for Low-Temperature Reaction. , 2007, , 135.		0
64	Plastic Mesoscale Combustors/Heat Exchangers. , 2007, , 141.		0
65	A Thermally Self-Sustaining Miniature Solid Oxide Fuel Cell. , 2007, , 117.		0
66	Plastic Mesoscale Heat Exchangers. , 2007, , .		0
67	A Thermally Self-Sustaining Miniature Solid Oxide Fuel Cell. , 2007, , .		0
68	Effect of Scale on the Performance of Heat-Recirculating Reactors. , 2006, , .		2
69	Gas-phase and catalytic combustion in heat-recirculating burners. Proceedings of the Combustion Institute, 2005, 30, 2463-2472.	3.9	247
70	A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 2005, 435, 795-798.	27.8	583
71	Extinction limits of catalytic combustion in microchannels. Proceedings of the Combustion Institute, 2002, 29, 957-963.	3.9	132
72	Investigation of a Piston Engine and Solid Oxide Fuel Cell Combined Hybrid Modular Powerplant for Unmanned Aerial Vehicles. , 0, , .		1

5