Madeleine Beekman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6721551/publications.pdf

Version: 2024-02-01

84171 76031 6,947 166 42 75 citations h-index g-index papers 171 171 171 5642 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experience shapes future foraging decisions in a brainless organism. Adaptive Behavior, 2022, 30, 211-221.	1.1	2
2	Adaptation to vectorâ€based transmission in a honeybee virus. Journal of Animal Ecology, 2021, 90, 2254-2267.	1.3	20
3	Adaptive, caste-specific changes to recombination rates in a thelytokous honeybee population. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210729.	1.2	3
4	Australian stingless bees detect odours left at food sources by nestmates, conspecifics and honey bees. Insectes Sociaux, 2021, 68, 151-159.	0.7	6
5	Who needs a brain? Slime moulds, behavioural ecology and minimal cognition. Adaptive Behavior, 2020, 28, 465-478.	1.1	19
6	A Single Gene Causes Thelytokous Parthenogenesis, the Defining Feature of the Cape Honeybee Apis mellifera capensis. Current Biology, 2020, 30, 2248-2259.e6.	1.8	23
7	What mechanistic factors affect thelytokous parthenogenesis in Apis mellifera caponises queens?. Apidologie, 2020, 51, 329-341.	0.9	1
8	Accumulation and Competition Amongst Deformed Wing Virus Genotypes in Na $ ilde{A}$ -ve Australian Honeybees Provides Insight Into the Increasing Global Prevalence of Genotype B. Frontiers in Microbiology, 2020, 11, 620.	1.5	32
9	Paternallyâ€biased gene expression follows kinâ€selected predictions in female honey bee embryos. Molecular Ecology, 2020, 29, 1523-1533.	2.0	16
10	Animal Personalities and Behavioral Genetics. , 2019, , 337-339.		0
10	Animal Personalities and Behavioral Genetics. , 2019, , 337-339. Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations. Physics of Life Reviews, 2019, 29, 1-26.	1.5	0 48
	Does being multi-headed make you better at solving problems? A survey of Physarum-based models and	1.5	
11	Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations. Physics of Life Reviews, 2019, 29, 1-26.		48
11 12	Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations. Physics of Life Reviews, 2019, 29, 1-26. Physarum inspires research beyond biomimetic algorithms. Physics of Life Reviews, 2019, 29, 51-54.		3
11 12 13	Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations. Physics of Life Reviews, 2019, 29, 1-26. Physarum inspires research beyond biomimetic algorithms. Physics of Life Reviews, 2019, 29, 51-54. Caste in Social Insects: Genetic Influences Over Caste Determination., 2019, , 274-281. Can't see the colony for the bees: behavioural perspectives of biological individuality. Biological	1.5	48 3 0
11 12 13	Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations. Physics of Life Reviews, 2019, 29, 1-26. Physarum inspires research beyond biomimetic algorithms. Physics of Life Reviews, 2019, 29, 51-54. Caste in Social Insects: Genetic Influences Over Caste Determination., 2019, , 274-281. Can't see the colony for the bees: behavioural perspectives of biological individuality. Biological Reviews, 2019, 94, 1935-1946. Ectothermic vertebrates are too cool to care: a response to comments on Beekman et al Behavioral	1.5 4.7	48 3 0
11 12 13 14	Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations. Physics of Life Reviews, 2019, 29, 1-26. Physarum inspires research beyond biomimetic algorithms. Physics of Life Reviews, 2019, 29, 51-54. Caste in Social Insects: Genetic Influences Over Caste Determination., 2019, , 274-281. Can't see the colony for the bees: behavioural perspectives of biological individuality. Biological Reviews, 2019, 94, 1935-1946. Ectothermic vertebrates are too cool to care: a response to comments on Beekman et al Behavioral Ecology, 2019, 30, 596-597. Direct transmission by injection affects competition among RNA viruses in honeybees. Proceedings of	1.5 4.7 1.0	48 3 0 6

#	Article	IF	CITATIONS
19	Conflict and major transitions — why we need true queens. Current Opinion in Insect Science, 2019, 34, 73-79.	2.2	6
20	Route selection but not trail clearing are influenced by detour length in the Australian meat ants. Insectes Sociaux, 2019, 66, 47-56.	0.7	3
21	Telling Your Friends Where the Goodies are – Recruitment Signals for Food and Habitat. , 2019, , 550-557.		0
22	Different bees, different needs: how nest-site requirements have shaped the decision-making processes in homeless honeybees (<i>Apis</i> Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170010.	1.8	9
23	Viable Triploid Honey Bees (Apis mellifera capensis) Are Reliably Produced in the Progeny of CO2 Narcotised Queens. G3: Genes, Genomes, Genetics, 2018, 8, 3357-3366.	0.8	5
24	Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes. Molecular Biology and Evolution, 2017, 34, msw266.	3.5	28
25	Flight range of the Australian stingless bee <i>Tetragonula carbonaria</i> (Hymenoptera: Apidae). Austral Entomology, 2017, 56, 50-53.	0.8	48
26	Argentine ants (<i>Linepithema humile</i>) use adaptable transportation networks to track changes in resource quality. Journal of Experimental Biology, 2017, 220, 686-694.	0.8	8
27	No evidence of queen thelytoky following interspecific crosses of the honey bees Apis cerana and Apis mellifera. Insectes Sociaux, 2017, 64, 241-246.	0.7	8
28	The Emperor has no clothes: a response to comments on Beekman and Jordan. Behavioral Ecology, 2017, 28, 630-631.	1.0	1
29	Cytogenetic basis of thelytoky in Apis mellifera capensis. Apidologie, 2017, 48, 623-634.	0.9	13
30	A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations. Journal of Virology, 2017, 91, .	1.5	138
31	Does the field of animal personality provide any new insights for behavioral ecology?. Behavioral Ecology, 2017, 28, 617-623.	1.0	96
32	The upside of recognition error? Artificially aggregated colonies of the stingless bee Tetragonula carbonaria tolerate high rates of worker drift. Biological Journal of the Linnean Society, 2017, 121, 258-266.	0.7	4
33	Häsel, Gretel and the slime mould—how an external spatial memory aids navigation in complex environments. Journal Physics D: Applied Physics, 2017, 50, 414003.	1.3	12
34	Paternal effects on Apis mellifera capensis worker ovary size. Apidologie, 2017, 48, 660-665.	0.9	7
35	Collective decision making in the red dwarf honeybee Apis florea: do the bees simply follow the flowers?. Insectes Sociaux, 2017, 64, 557-566.	0.7	7
36	Selective sweeps of mitochondrial DNA can drive the evolution of uniparental inheritance. Evolution; International Journal of Organic Evolution, 2017, 71, 2090-2099.	1.1	17

3

#	Article	IF	CITATIONS
37	An invasive social insect overcomes genetic load at the sex locus. Nature Ecology and Evolution, 2017, 1, 11.	3.4	45
38	When does cheating pay? Worker reproductive parasitism in honeybees. Insectes Sociaux, 2017, 64, 5-17.	0.7	3
39	Editorial: Ballroom Biology: Recent Insights into Honey Bee Waggle Dance Communications. Frontiers in Ecology and Evolution, 2016, 3, .	1.1	3
40	Weird sex: the underappreciated diversity of sexual reproduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160262.	1.8	33
41	Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150541.	1.8	37
42	How does a swarm of the giant Asian honeybee Apis dorsata reach consensus? A study of the individual behaviour of scout bees. Insectes Sociaux, 2016, 63, 395-406.	0.7	5
43	Parent-of-origin effects on genome-wide DNA methylation in the Cape honey bee (Apis mellifera) Tj ETQq1 1 0.784	1.2 rgBT	/Overlock 1/
44	Dancing for their supper: Do honeybees adjust their recruitment dance in response to the protein content of pollen?. Insectes Sociaux, 2016, 63, 117-126.	0.7	16
45	Honeybee linguistics \tilde{A} \hat{a} , \hat{a} comparative analysis of the waggle dance among species of Apis. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	14
46	Ants build transportation networks that optimize cost and efficiency at the expense of robustness. Behavioral Ecology, 2015, 26, 223-231.	1.0	25
47	Inheritance of thelytoky in the honey bee Apis mellifera capensis. Heredity, 2015, 114, 584-592.	1.2	22
48	Selection against Heteroplasmy Explains the Evolution of Uniparental Inheritance of Mitochondria. PLoS Genetics, 2015, 11, e1005112.	1.5	39
49	Brainless but Multi-Headed: Decision Making by the Acellular Slime Mould Physarum polycephalum. Journal of Molecular Biology, 2015, 427, 3734-3743.	2.0	65
50	Slime moulds use heuristics based on within-patch experience to decide when to leave. Journal of Experimental Biology, 2015, 218, 1175-9.	0.8	18
51	The frequency of arrhenotoky in the normally thelytokous Apis mellifera capensis worker and the Clone reproductive parasite. Insectes Sociaux, 2015, 62, 325-333.	0.7	9
52	Genetic reincarnation of workers as queens in the Eastern honeybee Apis cerana. Heredity, 2015, 114, 65-68.	1.2	9
53	Information integration and multiattribute decision making in non-neuronal organisms. Animal Behaviour, 2015, 100, 44-50.	0.8	52

Moving without a purpose: an experimental study of swarm guidance in the Western honey bee (Apis) Tj ETQq0 0 0 rgBT /Overlock 10 T

#	Article	IF	CITATIONS
55	Reproductive interference between honeybee species in artificial sympatry. Molecular Ecology, 2014, 23, 1096-1107.	2.0	20
56	A parent-of-origin effect on honeybee worker ovary size. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132388.	1.2	34
57	Effect of queen excluders on ovary activation in workers of the Eastern honeybee Apis cerana. Insectes Sociaux, 2014, 61, 191-196.	0.7	2
58	Honeybee waggle dance error: adaption or constraint? Unravelling the complex dance language of honeybees. Animal Behaviour, 2014, 94, 19-26.	0.8	29
59	Cheating workers with large activated ovaries avoid risky foraging. Behavioral Ecology, 2014, 25, 668-674.	1.0	16
60	The costs of being male: are there sex-specific effects of uniparental mitochondrial inheritance?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130440.	1.8	83
61	What cost mitochondria? The maintenance of functional mitochondrial DNA within and across generations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130438.	1.8	38
62	Consensus building in giant Asian honeybee, Apis dorsata, swarms onÂthe move. Animal Behaviour, 2014, 93, 191-199.	0.8	8
63	Foraging strategies of the acellular slime moulds Didymium iridis and Didymium bahiense. Fungal Ecology, 2014, 11, 29-36.	0.7	8
64	Why acquiesce? Worker reproductive parasitism in the Eastern honeybee (<i>Apis cerana</i>) . Journal of Evolutionary Biology, 2014, 27, 939-949.	0.8	12
65	Cheaters sometimes prosper: targeted worker reproduction in honeybee (<i><scp>A</scp>pis) Tj ETQq1 1 0.78</i>	4314 rgBT 2.0	⁻ /Oyerlock 10
66	Amoeboid organism uses extracellular secretions to make smart foraging decisions. Behavioral Ecology, 2013, 24, 812-818.	1.0	51
67	Solving the Towers of Hanoi – how an amoeboid organism efficiently constructs transport networks. Journal of Experimental Biology, 2013, 216, 1546-51.	0.8	41
68	Honeybee (Apis cerana) guards do not discriminate between robbers and reproductive parasites. Insectes Sociaux, 2013, 60, 265-271.	0.7	5
69	Keeping track of changes: the performance of ant colonies in dynamic environments. Animal Behaviour, 2013, 85, 637-643.	0.8	29
70	Do small swarms have an advantage when house hunting? The effect of swarm size on nest-site selection by <i>Apis mellifera</i> . Journal of the Royal Society Interface, 2013, 10, 20130533.	1.5	20
71	How dancing honey bees keep track of changes: the role of inspector bees. Behavioral Ecology, 2012, 23, 588-596.	1.0	44
72	Response to "Reproductive Biology of the Cape Honeybee: A Critique of Beekman et al." by Pirk et al Journal of Heredity, 2012, 103, 614-615.	1.0	0

#	Article	IF	CITATIONS
73	Slime mold uses an externalized spatial "memory―to navigate in complex environments. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17490-17494.	3.3	163
74	Making a trail: informed Argentine ants lead colony to the best food by U-turning coupled with enhanced pheromone laying. Animal Behaviour, 2012, 84, 1579-1587.	0.8	26
7 5	Asian hive bees, Apis cerana, modulate dance communication in response to nectar toxicity and demand. Animal Behaviour, 2012, 84, 1589-1594.	0.8	23
76	Heritability of worker ovariole number in the Cape honey bee Apis mellifera capensis. Insectes Sociaux, 2012, 59, 351-359.	0.7	12
77	Racial mixing in South African honeybees: the effects of genotype mixing on reproductive traits of workers. Behavioral Ecology and Sociobiology, 2012, 66, 897-904.	0.6	11
78	MAINTENANCE AND LOSS OF HETEROZYGOSITY IN A THELYTOKOUS LINEAGE OF HONEY BEES (APIS) Tj ETQq0 (0 0 rgBT /0	Overlock 10 T
79	A mathematical model of foraging in a dynamic environment by trail-laying Argentine ants. Journal of Theoretical Biology, 2012, 306, 32-45.	0.8	15
80	A THELYTOKOUS LINEAGE OF SOCIALLY PARASITIC HONEY BEES HAS RETAINED HETEROZYGOSITY DESPITE AT LEAST 10 YEARS OF INBREEDING. Evolution; International Journal of Organic Evolution, 2011, 65, 860-868.	1,1	25
81	Only full-sibling families evolved eusociality. Nature, 2011, 471, E4-E5.	13.7	74
82	Inaccurate and unverified information in decision making: a model for the nest site selection process of Apis florea. Animal Behaviour, 2011, 82, 995-1013.	0.8	9
83	Sperm utilization in honeybees (Apis mellifera scutellata and A. m. capensis) in South Africa. Apidologie, 2011, 42, 23-28.	0.9	4
84	Moving home: nest-site selection in the Red Dwarf honeybee (Apis florea). Behavioral Ecology and Sociobiology, 2011, 65, 945-958.	0.6	21
85	Deciding on the wing: in-flight decision making and search space sampling in the red dwarf honeybee Apis florea. Swarm Intelligence, 2011, 5, 121-141.	1.3	28
86	Irrational decision-making in an amoeboid organism: transitivity and context-dependent preferences. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 307-312.	1,2	116
87	The role of female dominance hierarchies in the mating behaviour of mosquitofish. Biology Letters, 2011, 7, 343-345.	1.0	16
88	Structure and formation of ant transportation networks. Journal of the Royal Society Interface, 2011, 8, 1298-1306.	1.5	64
89	Asexually Produced Cape Honeybee Queens (Apis mellifera capensis) Reproduce Sexually. Journal of Heredity, 2011, 102, 562-566.	1.0	15
90	Optimisation in a natural system: Argentine ants solve the Towers of Hanoi. Journal of Experimental Biology, 2011, 214, 50-58.	0.8	81

#	Article	IF	Citations
91	Speed–accuracy trade-offs during foraging decisions in the acellular slime mould <i>Physarum polycephalum</i> . Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 539-545.	1.2	60
92	Worker reproductive parasitism and drift in the western honeybee Apis mellifera. Behavioral Ecology and Sociobiology, 2010, 64, 419-427.	0.6	29
93	Maternity of replacement queens in the thelytokous Cape honey bee Apis mellifera capensis. Behavioral Ecology and Sociobiology, 2010, 64, 567-574.	0.6	26
94	Lack of interspecific parasitism between the dwarf honeybees Apis andreniformis and Apis florea. Behavioral Ecology and Sociobiology, 2010, 64, 1165-1170.	0.6	4
95	Worker reproductive parasitism in naturally orphaned colonies of the Asian red dwarf honey bee, Apis florea. Insectes Sociaux, 2010, 57, 163-167.	0.7	11
96	Maternity of emergency queens in the Cape honey bee, <i>Apis mellifera capensis</i> Li>. Molecular Ecology, 2010, 19, 2792-2799.	2.0	31
97	Caste in Social Insects: Genetic Influences Over Caste Determination. , 2010, , 254-260.		1
98	Amoeboid organism solves complex nutritional challenges. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4607-4611.	3.3	204
99	Food quality and the risk of light exposure affect patchâ€choice decisions in the slime mold Physarum polycephalum. Ecology, 2010, 91, 22-27.	1.5	53
100	Nature versus nurture in social insect caste differentiation. Trends in Ecology and Evolution, 2010, 25, 275-282.	4.2	241
101	Queenless colonies of the Asian red dwarf honey bee (Apis florea) are infiltrated by workers from other queenless colonies. Behavioral Ecology, 2009, 20, 817-820.	1.0	32
102	Food quality affects search strategy in the acellular slime mould, Physarum polycephalum. Behavioral Ecology, 2009, 20, 1160-1167.	1.0	59
103	Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4353-4361.	1.2	69
104	High bee traffic disrupts transfer of directional information in flying honeybee swarms. Animal Behaviour, 2009, 78, 117-121.	0.8	23
105	Honeybee, Apis mellifera, guards use adaptive acceptance thresholds to limit worker reproductive parasitism. Animal Behaviour, 2009, 78, 1205-1211.	0.8	13
106	Several workers lay eggs in the same brood cell in queenless honey bee (Apis mellifera) colonies. Insectes Sociaux, 2009, 56, 103-105.	0.7	2
107	A quantitative study of worker reproduction in queenright colonies of the Cape honey bee, <i>Apis mellifera capensis</i> . Molecular Ecology, 2009, 18, 2722-2727.	2.0	41
108	Intergenerational reproductive parasitism in a stingless bee. Molecular Ecology, 2009, 18, 3958-3960.	2.0	1

#	Article	IF	Citations
109	The role of multiple pheromones in food recruitment by ants. Journal of Experimental Biology, 2009, 212, 2337-2348.	0.8	65
110	Nestmate recognition by guards of the Asian hive bee Apis cerana. Insectes Sociaux, 2008, 55, 382-386.	0.7	8
111	Nest defence in a stingless bee: What causes fighting swarms in Trigona carbonaria (Hymenoptera,) Tj ETQq1 1 (0.784314	rgBT/Overlo
112	Dance precision of Apis florea—clues to the evolution of the honeybee dance language?. Behavioral Ecology and Sociobiology, 2008, 62, 1259-1265.	0.6	25
113	Who is the Queen's mother? Royal cheats in social insects. Journal of Biosciences, 2008, 33, 159-161.	0.5	2
114	Nest site selection in the open-nesting honeybee Apis florea. Behavioral Ecology and Sociobiology, 2008, 62, 1643-1653.	0.6	31
115	Thelytokous Parthenogenesis in Unmated Queen Honeybees (Apis mellifera capensis): Central Fusion and High Recombination Rates. Genetics, 2008, 180, 359-366.	1.2	44
116	Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa. Heredity, 2008, 100, 13-18.	1.2	38
117	Ancestral Monogamy Shows Kin Selection Is Key to the Evolution of Eusociality. Science, 2008, 320, 1213-1216.	6.0	608
118	When Workers Disunite: Intraspecific Parasitism by Eusocial Bees. Annual Review of Entomology, 2008, 53, 19-37.	5.7	118
119	Biological Foundations of Swarm Intelligence. Natural Computing Series, 2008, , 3-41.	2.2	29
120	Effects of Selection for Honey Bee Worker Reproduction on Foraging Traits. PLoS Biology, 2008, 6, e56.	2.6	45
121	Foraging in honeybees—when does it pay to dance?. Behavioral Ecology, 2008, 19, 255-261.	1.0	76
122	Inheritance of Traits Associated with Reproductive Potential in Apis mellifera capensis and Apis mellifera scutellata Workers. Journal of Heredity, 2008, 99, 376-381.	1.0	15
123	Cheating honeybee workers produce royal offspring. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 345-351.	1.2	58
124	Noise-Induced Adaptive Decision-Making in Ant-Foraging. Lecture Notes in Computer Science, 2008, , 415-425.	1.0	7
125	Searching for a new home-scouting behavior of honeybee swarms. Behavioral Ecology, 2007, 18, 384-392.	1.0	35
126	A scientific note on the drone flight time of <i>Apis mellifera capensis </i> and <i>A. m. scutellata </i> Apidologie, 2007, 38, 436-437.	0.9	4

#	Article	IF	CITATIONS
127	What makes a honeybee scout?. Behavioral Ecology and Sociobiology, 2007, 61, 985-995.	0.6	58
128	Higher removal rate of eggs laid by anarchistic queensâ€"a cost of anarchy?. Behavioral Ecology and Sociobiology, 2007, 61, 1847-1853.	0.6	1
129	No worker reproduction in the Australian stingless bee Trigona carbonaria Smith (Hymenoptera,) Tj ETQq1 1 0.78	4314 rgBT 0.7	l <mark>O</mark> verlock
130	The Costs and Benefits of Genetic Heterogeneity in Resistance against Parasites in Social Insects. American Naturalist, 2006, 167, 568-577.	1.0	58
131	Evidence for reproductive isolation between two colour morphs of cavity nesting honey bees (Apis) in south India. Insectes Sociaux, 2006, 53, 428-434.	0.7	16
132	How does an informed minority of scouts guide a honeybee swarm as it flies to its new home?. Animal Behaviour, 2006, 71, 161-171.	0.8	94
133	Developmental divergence: neglected variable in understanding the evolution of reproductive skew in social animals. Behavioral Ecology, 2006, 17, 622-627.	1.0	22
134	Honeybee swarms: how do scouts guide a swarm of uninformed bees?. Animal Behaviour, 2005, 70, 349-358.	0.8	80
135	How long will honey bees (Apis mellifera L.) be stimulated by scent to revisit past-profitable forage sites?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 1115-1120.	0.7	37
136	Increase in dance imprecision with decreasing foraging distance in the honey bee Apis mellifera L. is partly explained by physical constraints. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 1107-1113.	0.7	20
137	The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 1121-1129.	0.7	177
138	Honeybee workers use cues other than egg viability for policing. Biology Letters, 2005, 1, 129-132.	1.0	38
139	Comparing foraging behaviour of small and large honey-bee colonies by decoding waggle dances made by foragers. Functional Ecology, 2004, 18, 829-835.	1.7	85
140	Similar policing rates of eggs laid by virgin and mated honey-bee queens. Die Naturwissenschaften, 2004, 91, 598-601.	0.6	8
141	Differential reproductive success among subfamilies in queenless honeybee (Apis mellifera L.) colonies. Behavioral Ecology and Sociobiology, 2004, 56, 42-49.	0.6	28
142	Busy buzzersBumblebees: Their Behaviour and Ecology by Dave Goulson. Oxford University Press, 2003 £27.50 pbk (246 pages) ISBN 0198526075. Trends in Ecology and Evolution, 2004, 19, 65-66.	4.2	1
143	Is Her Majesty at home?. Trends in Ecology and Evolution, 2004, 19, 505-506.	4.2	10
144	From nonlinearity to optimality: pheromone trail foraging by ants. Animal Behaviour, 2003, 66, 273-280.	0.8	195

#	Article	IF	CITATIONS
145	Different policing rates of eggs laid by queenright and queenless anarchistic honey-bee workers (Apis) Tj ETQq1 1	0.784314	l ggBT /Ove
146	Effects of cross-feeding anarchistic and wild type honey bees: anarchistic workers are not queen-like. Die Naturwissenschaften, 2003, 90, 189-192.	0.6	13
147	Reproductive conflicts in social animals: who has power?. Trends in Ecology and Evolution, 2003, 18, 277-282.	4.2	92
148	Power over reproduction in social Hymenoptera. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1741-1753.	1.8	99
149	Sticking to their choice - honey bee subfamilies abandon declining food sources at a slow but uniform rate. Ecological Entomology, 2003, 28, 233-238.	1.1	15
150	Getting more than a fair share: nutrition of worker larvae related to social parasitism in the Cape honey bee Apis mellifera capensis. Apidologie, 2002, 33, 193-202.	0.9	42
151	A non-policing honey bee colony (Apis mellifera capensis). Die Naturwissenschaften, 2002, 89, 479-482.	0.6	15
152	When do honey bee guards reject their former nestmates after swarming?. Insectes Sociaux, 2002, 49, 56-61.	0.7	7
153	Parasitic Cape honey bee workers (Apis mellifera capensis) are not given differential treatment by African guards (A. m. scutellata). Insectes Sociaux, 2002, 49, 216-220.	0.7	15
154	Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing. Nature, 2002, 415, 163-165.	13.7	126
155	The evolution of social behavior in microorganisms. Trends in Ecology and Evolution, 2001, 16, 606-607.	4.2	4
156	Phase transition between disordered and ordered foraging in Pharaoh's ants. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9703-9706.	3.3	217
157	Does the diapause experience of bumblebee queens Bombus terrestris affect colony characteristics?. Ecological Entomology, 2000, 25, 1-6.	1.1	53
158	Long-range foraging by the honey-bee, Apis mellifera L Functional Ecology, 2000, 14, 490-496.	1.7	511
159	Parasitic honeybees get royal treatment. Nature, 2000, 404, 723-723.	13.7	57
160	Artificial rearing of bumble bees (Bombus terrestris) selects against heavy queens. Journal of Apicultural Research, 2000, 39, 61-65.	0.7	18
161	Respiration in bumblebee queens: effect of life phase on the discontinuous ventilation cycle. Entomologia Experimentalis Et Applicata, 1999, 92, 295-298.	0.7	13
162	Selection for non-diapause in the bumblebee Bombus terrestris, with notes on the effect of inbreeding. Entomologia Experimentalis Et Applicata, 1999, 93, 69-75.	0.7	25

#	Article	lF	CITATIONS
163	Optimal timing of the production of sexuals in bumblebee colonies. Entomologia Experimentalis Et Applicata, 1998, 88, 147-154.	0.7	31
164	Diapause survival and post-diapause performance in bumblebee queens (Bombus terrestris). Entomologia Experimentalis Et Applicata, 1998, 89, 207-214.	0.7	103
165	Bumblebee sex ratios: why do bumblebees produce so many males?. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1535-1543.	1.2	69
166	Photoperiodic induction of diapause in the large white butterfly, Pieris brassicae: Evidence for hourglass time measurement. Journal of Insect Physiology, 1988, 34, 1063-1069.	0.9	35