M C Mione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6721547/publications.pdf

Version: 2024-02-01

91 papers 6,098 citations

32 h-index 75 g-index

96 all docs 96
docs citations

96 times ranked 9563 citing authors

#	Article	IF	CITATIONS
1	Lactate modulates microglia polarization via IGFBP6 expression and remodels tumor microenvironment in glioblastoma. Cancer Immunology, Immunotherapy, 2023, 72, 1-20.	2.0	20
2	Lactate Induces the Expressions of MCT1 and HCAR1 to Promote Tumor Growth and Progression in Glioblastoma. Frontiers in Oncology, 2022, 12, 871798.	1.3	17
3	Zebrafish Melanoma-Derived Interstitial EVs Are Carriers of ncRNAs That Induce Inflammation. International Journal of Molecular Sciences, 2022, 23, 5510.	1.8	3
4	Precise base editing for the in vivo study of developmental signaling and human pathologies in zebrafish. ELife, 2021, 10, .	2.8	26
5	Automated in vivo screen in zebrafish identifies Clotrimazole as targeting a metabolic vulnerability in a melanoma model. Developmental Biology, 2020, 457, 215-225.	0.9	12
6	Rad21 Haploinsufficiency Prevents ALT-Associated Phenotypes in Zebrafish Brain Tumors. Genes, 2020, 11, 1442.	1.0	2
7	Repetitive Elements Trigger RIG-I-like Receptor Signaling that Regulates the Emergence of Hematopoietic Stem and Progenitor Cells. Immunity, 2020, 53, 934-951.e9.	6.6	43
8	Expression of tert Prevents ALT in Zebrafish Brain Tumors. Frontiers in Cell and Developmental Biology, 2020, 8, 65.	1.8	17
9	Changes in the Expression of Pre-Replicative Complex Genes in hTERT and ALT Pediatric Brain Tumors. Cancers, 2020, 12, 1028.	1.7	8
10	Fam83F induces p53 stabilisation and promotes its activity. Cell Death and Differentiation, 2019, 26, 2125-2138.	5.0	16
11	Nano-Sampling and Reporter Tools to Study Metabolic Regulation in Zebrafish. Frontiers in Cell and Developmental Biology, 2019, 7, 15.	1.8	6
12	A network-based approach to identify deregulated pathways and drug effects in metabolic syndrome. Nature Communications, 2019, 10, 5215.	5.8	47
13	Zebrafish disease models in hematology: Highlights on biological and translational impact. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 620-633.	1.8	18
14	Targeting oncogenic Ras by the <i>Clostridium perfringens</i> toxin TpeL. Oncotarget, 2018, 9, 16489-16500.	0.8	9
15	Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression. Frontiers in Genetics, 2018, 9, 675.	1.1	18
16	Tumor initiating cells induce Cxcr4-mediated infiltration of pro-tumoral macrophages into the brain. ELife, 2018, 7, .	2.8	64
17	A metabolic interplay coordinated by HLX regulates myeloid differentiation and AML through partly overlapping pathways. Nature Communications, 2018, 9, 3090.	5.8	21
18	The Zebrafish as an Emerging Model to Study DNA Damage in Aging, Cancer and Other Diseases. Frontiers in Cell and Developmental Biology, 2018, 6, 178.	1.8	28

#	Article	IF	CITATIONS
19	A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK/PI3K induced malignant growth. DMM Disease Models and Mechanisms, 2017, 10, 15-28.	1.2	58
20	Melanoma niche formation: it is all about melanosomes making <scp>CAF</scp> s. Pigment Cell and Melanoma Research, 2017, 30, 8-10.	1.5	2
21	Zebrafish in Translational Cancer Research: Insight into Leukemia, Melanoma, Glioma and Endocrine Tumor Biology. Genes, 2017, 8, 236.	1.0	35
22	Dynamic regulation of Pin1 expression and function during zebrafish development. PLoS ONE, 2017, 12, e0175939.	1.1	17
23	The Toolbox for Conditional Zebrafish Cancer Models. Advances in Experimental Medicine and Biology, 2016, 916, 21-59.	0.8	17
24	Automated phenotype pattern recognition of zebrafish for high-throughput screening. Bioengineered, 2016, 7, 261-265.	1.4	16
25	Micro <scp>RNA</scp> s in melanocyte and melanoma biology. Pigment Cell and Melanoma Research, 2015, 28, 340-354.	1.5	48
26	Novel Transgenic Lines to Fluorescently Label Clathrin and Caveolin Endosomes in Live Zebrafish. Zebrafish, 2015, 12, 202-203.	0.5	4
27	Development of Hras-Induced Zebrafish Leukemia Models. Blood, 2015, 126, 2459-2459.	0.6	5
28	In vivo cell biology in zebrafish – providing insights into vertebrate development and disease. Journal of Cell Science, 2014, 127, 485-495.	1.2	60
29	Insights from Genetic Models of Melanoma in Fish. Current Pathobiology Reports, 2014, 2, 85-92.	1.6	1
30	Targeting oncogene expression to endothelial cells induces proliferation of the myelo-erythroid lineage by repressing the notch pathway. Leukemia, 2013, 27, 2229-2241.	3.3	28
31	Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth. Development (Cambridge), 2013, 140, 3997-4007.	1.2	23
32	Highly penetrant melanoma in a zebrafish model is independent of ErbB3b signaling. Pigment Cell and Melanoma Research, 2012, 25, 287-289.	1.5	9
33	Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish. Development (Cambridge), 2012, 139, 3644-3652.	1.2	71
34	Cancer and Inflammation: An Aspirin a Day Keeps the Cancer at Bay. Current Biology, 2012, 22, R522-R525.	1.8	12
35	Fishing for melanoma markers through comparative transcriptome analysis. Pigment Cell and Melanoma Research, 2012, 25, 709-710.	1.5	0
36	EuFishBioMed (COST Action BM0804): A European Network to Promote the Use of Small Fishes in Biomedical Research. Zebrafish, 2012, 9, 90-93.	0.5	7

#	Article	IF	CITATIONS
37	Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature, 2012, 488, 231-235.	13.7	460
38	Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nature Methods, 2012, 9, 749-754.	9.0	397
39	Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Developmental Biology, 2012, 362, 11-23.	0.9	39
40	A zebrafish model for nevus regeneration. Pigment Cell and Melanoma Research, 2011, 24, 378-381.	1.5	9
41	Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature, 2011, 473, 234-238.	13.7	350
42	In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography. Journal of Biomedical Optics, 2011, 16, 1.	1.4	59
43	Live Imaging of Innate Immune Cell Sensing of Transformed Cells in Zebrafish Larvae: Parallels between Tumor Initiation and Wound Inflammation. PLoS Biology, 2010, 8, e1000562.	2.6	185
44	Characterization of the Regulatory Region of the Zebrafish Prep1.1 Gene: Analogies to the Promoter of the Human PREP1. PLoS ONE, 2010, 5, e15047.	1.1	3
45	Kita Driven Expression of Oncogenic HRAS Leads to Early Onset and Highly Penetrant Melanoma in Zebrafish. PLoS ONE, 2010, 5, e15170.	1.1	134
46	Stable Vascular Connections and Remodeling Require Full Expression of VE-Cadherin in Zebrafish Embryos. PLoS ONE, 2009, 4, e5772.	1.1	107
47	Critical Role of Tissue Kallikrein in Vessel Formation and Maturation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 657-664.	1.1	64
48	Expression of H-RASV12 in a zebrafish model of Costello syndrome causes cellular senescence in adult proliferating cells. DMM Disease Models and Mechanisms, 2009, 2, 56-67.	1.2	77
49	Monoclonal antibodies isolated by large-scale screening are suitable for labeling adult zebrafish (Danio rerio) tissues and cell structures. Journal of Immunological Methods, 2009, 346, 9-17.	0.6	9
50	Global Repression of Cancer Gene Expression in a Zebrafish Model of Melanoma Is Linked to Epigenetic Regulation. Zebrafish, 2009, 6, 417-424.	0.5	48
51	MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice. Science, 2009, 324, 1710-1713.	6.0	1,114
52	The Tumor Suppressor PRDM5 Regulates Wnt Signaling at Early Stages of Zebrafish Development. PLoS ONE, 2009, 4, e4273.	1.1	42
53	How to create the vascular tree? (Latest) help from the zebrafish. , 2008, 118, 206-230.		55
54	How Neuronal Migration Contributes to the Morphogenesis of the CNS: Insights from the Zebrafish. Developmental Neuroscience, 2008, 30, 65-81.	1.0	37

#	Article	IF	Citations
55	Neuronal function of Tbx20 conserved from nematodes to vertebrates. Developmental Biology, 2008, 317, 671-685.	0.9	22
56	Endocytic Trafficking of Rac Is Required for the Spatial Restriction of Signaling in Cell Migration. Cell, 2008, 134, 135-147.	13.5	392
57	SIRT1 controls endothelial angiogenic functions during vascular growth. Genes and Development, 2007, 21, 2644-2658.	2.7	540
58	Mutation in Rab3 GTPase-Activating Protein (RAB3GAP) Noncatalytic Subunit in a Kindred with Martsolf Syndrome. American Journal of Human Genetics, 2006, 78, 702-707.	2.6	91
59	Neurogenin1 is a determinant of zebrafish basal forebrain dopaminergic neurons and is regulated by the conserved zinc finger protein Tof/Fezl. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5143-5148.	3.3	78
60	Identification of alternatively spliced dab1 isoforms in zebrafish. Development Genes and Evolution, 2006, 216, 291-299.	0.4	14
61	Zebrafish BarH-like genes define discrete neural domains in the early embryo. Gene Expression Patterns, 2006, 6, 347-352.	0.3	22
62	Expression ofpcp4a in subpopulations of CNS neurons in zebrafish. Journal of Comparative Neurology, 2006, 495, 769-787.	0.9	6
63	Differentiation of cerebellar cell identities in absence of Fgf signalling in zebrafish Otx morphants. Development (Cambridge), 2006, 133, 1891-1900.	1.2	58
64	Early Development of Functional Spatial Maps in the Zebrafish Olfactory Bulb. Journal of Neuroscience, 2005, 25, 5784-5795.	1.7	119
65	Conserved and divergent patterns ofReelin expression in the zebrafish central nervous system. Journal of Comparative Neurology, 2002, 450, 73-93.	0.9	81
66	Overlapping expression of zebrafish T-brain-1 and eomesodermin during forebrain development. Mechanisms of Development, 2001, 100, 93-97.	1.7	61
67	Basic fibroblast growth factor prolongs the proliferation of rat cortical progenitor cells in vitro without altering their cell cycle parameters. Cerebral Cortex, 1997, 7, 293-302.	1.6	71
68	Neuronal Clones in the Cerebral Cortex Show Morphological and Neurotransmitter Heterogeneity during Development. Cerebral Cortex, 1996, 6, 490-497.	1.6	25
69	How do developing cortical neurones know where to go?. Trends in Neurosciences, 1994, 17, 443-445.	4.2	7
70	Uptake of 5-hydroxydopamine into non-sympathetic nerves of guinea-pig uterine artery in late pregnancy. Journal of Neurocytology, 1993, 22, 164-175.	1.6	7
71	Plasticity in expression of calcitonin gene-related peptide and substance P immunoreactivity in ganglia and fibres following guanethidine and/or capsaicin denervation. Cell and Tissue Research, 1992, 268, 491-504.	1.5	32
72	Increase of dopamine \hat{l}^2 -hydroxylase immunoreactivity in non-noradrenergic nerves of rat cerebral arteries following long-term sympathectomy. Neuroscience Letters, 1991, 123, 167-171.	1.0	17

#	Article	IF	CITATIONS
73	Nerve fibres in the uterine artery increase in number in pregnant guinea-pigs. NeuroReport, 1991, 2, 537-540.	0.6	11
74	Pregnancy reduces noradrenaline but not neuropeptide levels in the uterine artery of the guinea-pig. Cell and Tissue Research, 1990, 259, 503-509.	1.5	29
75	Long-term chemical sympathectomy leads to an increase of neuropeptide Y immunoreactivity in cerebrovascular nerves and iris of the developing rat. Neuroscience, 1990, 34, 369-378.	1.1	39
76	Use of enhanced silver staining combined with electron microscopical immunolabelling to demonstrate the colocalization of neuropeptide Y and vasoactive intestinal polypeptide in cerebrovascular nerves. Neuroscience, 1990, 39, 775-785.	1.1	19
77	Peptides and vasomotor mechanisms. , 1990, 46, 429-468.		80
78	Binding of [³ H]â€muscimol to GABA _A sites in the guineaâ€pig urinary bladder: biochemical assay and autoradiography. British Journal of Pharmacology, 1989, 96, 313-318.	2.7	18
79	Age-related changes in vasoactive intestinal polypeptide levels and distribution in the rat lung. Journal of Neural Transmission, 1988, 74, 1-10.	1.4	19
80	An increase in the expression of neuropeptidergic vasodilator, but not vasoconstrictor, cerebrovascular nerves in aging rats. Brain Research, 1988, 460, 103-113.	1.1	79
81	Age-related changes of noradrenergic innervation of rat splanchnic blood vessels: a histofluorescence and neurochemical study. Journal of the Autonomic Nervous System, 1988, 25, 27-33.	1.9	21
82	Age-related changes in the noradrenergic innervation of the coronary arteries in old rats: a fluorescent histochemical study. Journal of the Autonomic Nervous System, 1988, 22, 247-251.	1.9	27
83	The noradrenergic innervation of the vasa nervorum in old rats: a fluorescence histochemical study. Journal of the Autonomic Nervous System, 1987, 18, 177-180.	1.9	10
84	³ H-Muscimol Binding Sites within Guinea Pig Ovary: A Histoautoradiographic Study. Pharmacology, 1986, 32, 202-207.	0.9	20
85	Segmental distribution and gestational changes of GABA-transaminase activity in the rat oviduct. Reproduction, 1986, 78, 593-599.	1.1	3
86	Characterization of [3H]5-hydroxytryptamine uptake within rat cerebrovascular tree. European Journal of Pharmacology, 1985, 112, 181-186.	1.7	19
87	Localization of Dopamine Receptors in the Rabbit Renal Artery: A Histoautoradiographic Study. Pharmacology, 1984, 29, 17-23.	0.9	7
88	Protocol for improving the morphology of frozen sections of nervous and muscular tissue. Italian Journal of Neurological Sciences, 1984, 5, 99-99.	0.1	0
89	(3H)-spiroperidol binding sites in the rabbit splenic artery. Basic Research in Cardiology, 1984, 79, 80-85.	2.5	3
90	Dopamine-sensitive cAMP generating system in rat extracerebral arteries. European Journal of Pharmacology, 1984, 97, 105-109.	1.7	14

#	Article	IF	CITATIONS
91	The autonomic innervation of the vasa nervorum. Journal of Neural Transmission, 1983, 58, 291-297.	1.4	33