Tino Krell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6721523/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiology Reviews, 2022, 46, .	3.9	57
2	Antimicrobial resistance: progress and challenges in antibiotic discovery and antiâ€infective therapy. Microbial Biotechnology, 2022, 15, 70-78.	2.0	22
3	A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environmental Microbiology, 2022, 24, 3580-3597.	1.8	21
4	Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains: Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation. MSystems, 2022, 7, e0151821.	1.7	11
5	Amino acid sensor conserved from bacteria to humans. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110415119.	3.3	31
6	Chemotaxis of the Human Pathogen Pseudomonas aeruginosa to the Neurotransmitter Acetylcholine. MBio, 2022, 13, e0345821.	1.8	19
7	Noncanonical Sensing Mechanisms for Bacillus subtilis Chemoreceptors. Journal of Bacteriology, 2022, , e0002722.	1.0	1
8	<i>Pseudomonas syringae</i> pv. <i>tomato</i> infection of tomato plants is mediated by GABA and <scp>l</scp> â€Pro chemoperception. Molecular Plant Pathology, 2022, 23, 1433-1445.	2.0	14
9	Signal binding at both modules of its dCache domain enables the McpA chemoreceptor of <i>Bacillus velezensis</i> to sense different ligands. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
10	The structural basis for signal promiscuity in a bacterial chemoreceptor. FEBS Journal, 2021, 288, 2294-2310.	2.2	9
11	The role of solute binding proteins in signal transduction. Computational and Structural Biotechnology Journal, 2021, 19, 1786-1805.	1.9	34
12	Reduction of alternative electron acceptors drives biofilm formation in Shewanella algae. Npj Biofilms and Microbiomes, 2021, 7, 9.	2.9	15
13	Low CyaA expression and antiâ€cooperative binding of cAMP to CRP frames the scope of the cognate regulon of Pseudomonas putida. Environmental Microbiology, 2021, 23, 1732-1749.	1.8	4
14	<i>Pseudomonas aeruginosa</i> as a Model To Study Chemosensory Pathway Signaling. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	39
15	Chemotaxis of Beneficial Rhizobacteria to Root Exudates: The First Step towards Root–Microbe Rhizosphere Interactions. International Journal of Molecular Sciences, 2021, 22, 6655.	1.8	69
16	Histamine: A Bacterial Signal Molecule. International Journal of Molecular Sciences, 2021, 22, 6312.	1.8	12
17	Complete Genome Sequence and Methylome of the Type Strain of Shewanella algae. Microbiology Resource Announcements, 2021, 10, e0055921.	0.3	3
18	Prevalence and Specificity of Chemoreceptor Profiles in Plant-Associated Bacteria. MSystems, 2021, 6, e0095121.	1.7	20

#	Article	IF	CITATIONS
19	Chemoreceptors with C-terminal pentapeptides for CheR and CheB binding are abundant in bacteria that maintain host interactions. Computational and Structural Biotechnology Journal, 2020, 18, 1947-1955.	1.9	4
20	Evidence for Pentapeptide-Dependent and Independent CheB Methylesterases. International Journal of Molecular Sciences, 2020, 21, 8459.	1.8	5
21	Full Transcriptomic Response of Pseudomonas aeruginosa to an Inulin-Derived Fructooligosaccharide. Frontiers in Microbiology, 2020, 11, 202.	1.5	14
22	How Bacterial Chemoreceptors Evolve Novel Ligand Specificities. MBio, 2020, 11, .	1.8	52
23	The use of isothermal titration calorimetry to unravel chemotactic signalling mechanisms. Environmental Microbiology, 2020, 22, 3005-3019.	1.8	21
24	Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. International Journal of Molecular Sciences, 2019, 20, 5156.	1.8	19
25	The involvement of McpB chemoreceptor from Pseudomonas aeruginosa PAO1 in virulence. Scientific Reports, 2019, 9, 13166.	1.6	16
26	Concentration Dependent Effect of Plant Root Exudates on the Chemosensory Systems of Pseudomonas putida KT2440. Frontiers in Microbiology, 2019, 10, 78.	1.5	37
27	The Molecular Mechanism of Nitrate Chemotaxis via Direct Ligand Binding to the PilJ Domain of McpN. MBio, 2019, 10, .	1.8	40
28	Chemoperception of Specific Amino Acids Controls Phytopathogenicity in Pseudomonas syringae pv. tomato. MBio, 2019, 10, .	1.8	31
29	Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growthâ€promoting rhizobacteria. Environmental Microbiology, 2019, 21, 402-415.	1.8	50
30	Regulation of carbohydrate degradation pathways in <i>Pseudomonas</i> involves a versatile set of transcriptional regulators. Microbial Biotechnology, 2018, 11, 442-454.	2.0	44
31	The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Scientific Reports, 2018, 8, 2102.	1.6	35
32	Exploring the (Almost) Unknown: Archaeal Two-Component Systems. Journal of Bacteriology, 2018, 200, .	1.0	5
33	Plant Growth Promotion and Biocontrol Mediated by Plant-Associated Bacteria. Microorganisms for Sustainability, 2018, , 45-80.	0.4	15
34	High-Throughput Screening to Identify Chemoreceptor Ligands. Methods in Molecular Biology, 2018, 1729, 291-301.	0.4	20
35	The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiology Reviews, 2018, 42, .	3.9	211
36	High-Affinity Chemotaxis to Histamine Mediated by the TlpQ Chemoreceptor of the Human Pathogen Pseudomonas aeruginosa. MBio, 2018, 9, .	1.8	57

#	Article	IF	CITATIONS
37	Functional Annotation of Bacterial Signal Transduction Systems: Progress and Challenges. International Journal of Molecular Sciences, 2018, 19, 3755.	1.8	19
38	An auxin controls bacterial antibiotics production. Nucleic Acids Research, 2018, 46, 11229-11238.	6.5	27
39	Sensing, Signaling, and Uptake: An Introduction. , 2018, , 119-126.		0
40	Structural Basis for Polyamine Binding at the dCACHE Domain of the McpU Chemoreceptor from Pseudomonas putida. Journal of Molecular Biology, 2018, 430, 1950-1963.	2.0	33
41	The plant compound rosmarinic acid induces a broad quorum sensing response in <i>Pseudomonas aeruginosa</i> PAO1. Environmental Microbiology, 2018, 20, 4230-4244.	1.8	17
42	Genetics of Sensing, Accessing, and Exploiting Hydrocarbons. , 2018, , 345-359.		1
43	Extrusion Pumps for Hydrocarbons: An Efficient Evolutionary Strategy to Confer Resistance to Hydrocarbons. , 2018, , 361-371.		Ο
44	Membrane Composition and Modifications in Response to Aromatic Hydrocarbons in Gram-Negative Bacteria. , 2018, , 373-384.		3
45	The Family of Two-Component Systems That Regulate Hydrocarbon Degradation Pathways. , 2018, , 201-220.		Ο
46	The Family of Two-Component Systems That Regulate Hydrocarbon Degradation Pathways. , 2018, , 1-21.		2
47	Sensing, Signaling, and Uptake: An Introduction. , 2018, , 1-8.		Ο
48	Genetics of Sensing, Accessing, and Exploiting Hydrocarbons. , 2018, , 1-15.		0
49	Extrusion Pumps for Hydrocarbons: An Efficient Evolutionary Strategy to Confer Resistance to Hydrocarbons. , 2018, , 1-11.		0
50	Chemoreceptor-based signal sensing. Current Opinion in Biotechnology, 2017, 45, 8-14.	3.3	53
51	Genome Sequence of Serratia marcescens MSU97, a Plant-Associated Bacterium That Makes Multiple Antibiotics. Genome Announcements, 2017, 5, .	0.8	13
52	Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes. Nitric Oxide - Biology and Chemistry, 2017, 68, 137-149.	1.2	46
53	Recent Advances and Future Prospects in Bacterial and Archaeal Locomotion and Signal Transduction. Journal of Bacteriology, 2017, 199, e00203-17.	1.0	27
54	Sensory Repertoire of Bacterial Chemoreceptors. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	158

#	Article	IF	CITATIONS
55	Identification of GntR as regulator of the glucose metabolism in <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2017, 19, 3721-3733.	1.8	28
56	Assigning chemoreceptors to chemosensory pathways in <i>Pseudomonas aeruginosa</i> . Proceedings of the United States of America, 2017, 114, 12809-12814.	3.3	72
57	Purification and characterization of Pseudomonas aeruginosa LasR expressed in acyl-homoserine lactone free Escherichia coli cultures. Protein Expression and Purification, 2017, 130, 107-114.	0.6	12
58	The expression of many chemoreceptor genes depends on the cognate chemoeffector as well as on the growth medium and phase. Current Genetics, 2017, 63, 457-470.	0.8	13
59	Metabolic Value Chemoattractants Are Preferentially Recognized at Broad Ligand Range Chemoreceptor of Pseudomonas putida KT2440. Frontiers in Microbiology, 2017, 8, 990.	1.5	34
60	Riboswitches as Potential Targets for the Development of Anti-Biofilm Drugs. Current Topics in Medicinal Chemistry, 2017, 17, 1945-1953.	1.0	9
61	Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Frontiers in Microbiology, 2016, 7, 1937.	1.5	35
62	Assessment of the contribution of chemoreceptorâ€based signalling to biofilm formation. Environmental Microbiology, 2016, 18, 3355-3372.	1.8	67
63	Biosynthesis of the acetyl oA carboxylaseâ€inhibiting antibiotic, andrimid in <i>Serratia</i> is regulated by Hfq and the LysRâ€ŧype transcriptional regulator, AdmX. Environmental Microbiology, 2016, 18, 3635-3650.	1.8	39
64	<scp>McpQ</scp> is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environmental Microbiology, 2016, 18, 3284-3295.	1.8	39
65	Identification of a chemoreceptor that specifically mediates chemotaxis toward metabolizable purine derivatives. Molecular Microbiology, 2016, 99, 34-42.	1.2	48
66	Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development. Applied and Environmental Microbiology, 2016, 82, 4133-4144.	1.4	32
67	Two different mechanisms mediate chemotaxis to inorganic phosphate in Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 28967.	1.6	62
68	Genome Sequence of Serratia plymuthica A153, a Model Rhizobacterium for the Investigation of the Synthesis and Regulation of Haterumalides, Zeamine, and Andrimid. Genome Announcements, 2016, 4, .	0.8	17
69	So different and still so similar: The plant compound rosmarinic acid mimics bacterial homoserine lactone quorum sensing signals. Communicative and Integrative Biology, 2016, 9, e1156832.	0.6	11
70	Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Science Signaling, 2016, 9, ra1.	1.6	106
71	Identification of ligands for bacterial sensor proteins. Current Genetics, 2016, 62, 143-147.	0.8	8
72	Identification and Characterization of Bacterial Chemoreceptors Using Quantitative Capillary and Gradient Plate Chemotaxis Assays. Bio-protocol, 2016, 6, .	0.2	12

#	Article	IF	CITATIONS
73	Specific gammaâ€aminobutyrate chemotaxis in pseudomonads with different lifestyle. Molecular Microbiology, 2015, 97, 488-501.	1.2	67
74	Tackling the bottleneck in bacterial signal transduction research: highâ€ŧhroughput identification of signal molecules. Molecular Microbiology, 2015, 96, 685-688.	1.2	23
75	Identification of a Chemoreceptor for C ₂ and C ₃ Carboxylic Acids. Applied and Environmental Microbiology, 2015, 81, 5449-5457.	1.4	40
76	Multiple signals modulate the activity of the complex sensor kinase <scp>T</scp> od <scp>S</scp> . Microbial Biotechnology, 2015, 8, 103-115.	2.0	12
77	Correlation between signal input and output in <scp>PctA</scp> and <scp>PctB</scp> amino acid chemoreceptor of <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> . Molecular Microbiology, 2015, 96, 513-525.	1.2	41
78	Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms. PLoS ONE, 2014, 9, e85772.	1.1	25
79	<i>Pseudomonas</i> chemotaxis. FEMS Microbiology Reviews, 2014, 39, n/a-n/a.	3.9	174
80	GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in <i>Pseudomonas aeruginosa</i> . Nucleic Acids Research, 2014, 42, 7654-7665.	6.5	41
81	Specificity of the CheR2 Methyltransferase in <i>Pseudomonas aeruginosa</i> Is Directed by a C-Terminal Pentapeptide in the McpB Chemoreceptor. Science Signaling, 2014, 7, ra34.	1.6	29
82	The HBM domain: Introducing bimodularity to bacterial sensing. Protein Science, 2014, 23, 332-336.	3.1	27
83	Identification of New Residues Involved in Intramolecular Signal Transmission in a Prokaryotic Transcriptional Repressor. Journal of Bacteriology, 2014, 196, 588-594.	1.0	6
84	Fructose 1â€phosphate is the one and only physiological effector of the Cra (FruR) regulator of <i>Pseudomonas putida</i> . FEBS Open Bio, 2014, 4, 377-386.	1.0	28
85	Qualitative and Quantitative Assays for Flagellum-Mediated Chemotaxis. Methods in Molecular Biology, 2014, 1149, 87-97.	0.4	7
86	Characterization of Molecular Interactions Using Isothermal Titration Calorimetry. Methods in Molecular Biology, 2014, 1149, 193-203.	0.4	11
87	RecA Protein Plays a Role in the Chemotactic Response and Chemoreceptor Clustering of Salmonella enterica. PLoS ONE, 2014, 9, e105578.	1.1	47
88	The <i><scp>P</scp>seudomonas putida</i> â€ <scp>HskA</scp> hybrid sensor kinase responds to redox signals and contributes to the adaptation of the electron transport chain composition in response to oxygen availability. Environmental Microbiology Reports, 2013, 5, 825-834.	1.0	10
89	The <i><scp>P</scp>seudomonas putida</i> <scp><scp>HskA</scp></scp> hybrid sensor kinase controls the composition of the electron transport chain. Environmental Microbiology Reports, 2013, 5, 291-300.	1.0	9
90	Bioavailability of pollutants and chemotaxis. Current Opinion in Biotechnology, 2013, 24, 451-456.	3.3	78

#	Article	IF	CITATIONS
91	Transcriptional control by two interacting regulatory proteins: identification of the PtxS binding site at PtxR. Nucleic Acids Research, 2013, 41, 10150-10156.	6.5	7
92	Purification, crystallization and preliminary crystallographic analysis of the ligand-binding regions of the PctA and PctB chemoreceptors from <i>Pseudomonas aeruginosa</i> in complex with amino acids. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1431-1435.	0.7	4
93	Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the nonâ€protein amino acid gammaâ€aminobutyrate (<scp>GABA</scp>). Molecular Microbiology, 2013, 88, 1230-1243.	1.2	87
94	Tactic responses to pollutants and their potential to increase biodegradation efficiency. Journal of Applied Microbiology, 2013, 114, 923-933.	1.4	40
95	High Specificity in CheR Methyltransferase Function. Journal of Biological Chemistry, 2013, 288, 18987-18999.	1.6	33
96	Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18926-18931.	3.3	68
97	Analysis of solvent tolerance in <i>Pseudomonas putida</i> DOTâ€T1E based on its genome sequence and a collection of mutants. FEBS Letters, 2012, 586, 2932-2938.	1.3	40
98	Responses of Pseudomonas putida to toxic aromatic carbon sources. Journal of Biotechnology, 2012, 160, 25-32.	1.9	47
99	<i>In situ</i> X-ray data collection from highly sensitive crystals of <i>Pseudomonas putida</i> PtxS in complex with DNA. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1307-1310.	0.7	6
100	Solvent tolerance in Gram-negative bacteria. Current Opinion in Biotechnology, 2012, 23, 415-421.	3.3	169
101	Genes for Carbon Metabolism and the ToxA Virulence Factor in Pseudomonas aeruginosa Are Regulated through Molecular Interactions of PtxR and PtxS. PLoS ONE, 2012, 7, e39390.	1.1	33
102	Genes Encoding Cher-TPR Fusion Proteins Are Predominantly Found in Gene Clusters Encoding Chemosensory Pathways with Alternative Cellular Functions. PLoS ONE, 2012, 7, e45810.	1.1	6
103	Construction of a prototype two-component system from the phosphorelay system TodS/TodT. Protein Engineering, Design and Selection, 2012, 25, 159-169.	1.0	7
104	Study of the TmoS/TmoT two omponent system: towards the functional characterization of the family of TodS/TodT like systems. Microbial Biotechnology, 2012, 5, 489-500.	2.0	28
105	Transcriptional control of the main aromatic hydrocarbon efflux pump in <i>Pseudomonas</i> . Environmental Microbiology Reports, 2012, 4, 158-167.	1.0	21
106	Crystallization and crystallographic analysis of the ligand-binding domain of thePseudomonas putidachemoreceptor McpS in complex with malate and succinate. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 428-431.	0.7	2
107	The Crp regulator of <i>Pseudomonas putida</i> : evidence of an unusually high affinity for its physiological effector, cAMP. Environmental Microbiology, 2012, 14, 702-713.	1.8	14
108	Identification of a Novel Calcium Binding Motif Based on the Detection of Sequence Insertions in the Animal Peroxidase Domain of Bacterial Proteins. PLoS ONE, 2012, 7, e40698.	1.1	15

#	Article	IF	CITATIONS
109	Effect of the β-Propiolactone Treatment on the Adsorption and Fusion of Influenza A/Brisbane/59/2007 and A/New Caledonia/20/1999 Virus H1N1 on a Dimyristoylphosphatidylcholine/Ganglioside GM3 Mixed Phospholipids Monolayer at the Air–Water Interface. Langmuir, 2011, 27, 13675-13683.	1.6	15
110	Molecular Responses to Solvent Stress: Strategies for Living in Unpalatable Substrates. , 2011, , 971-990.		0
111	Three dimensional morphology of rabies virus studied by cryo-electron tomography. Journal of Structural Biology, 2011, 176, 32-40.	1.3	25
112	Diversity at its best: bacterial taxis. Environmental Microbiology, 2011, 13, 1115-1124.	1.8	123
113	The pGRT1 plasmid of <i>Pseudomonas putida</i> DOTâ€T1E encodes functions relevant for survival under harsh conditions in the environment. Environmental Microbiology, 2011, 13, 2315-2327.	1.8	43
114	Bacterial chemotaxis towards aromatic hydrocarbons in <i>Pseudomonas</i> . Environmental Microbiology, 2011, 13, 1733-1744.	1.8	78
115	Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnology, 2011, 29, 641-647.	4.9	74
116	Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor. Journal of Molecular Recognition, 2011, 24, 378-385.	1.1	31
117	Unbinding forces of single pertussis toxin–antibody complexes measured by atomic force spectroscopy correlate with their dissociation rates determined by surface plasmon resonance. Journal of Molecular Recognition, 2011, 24, 1105-1114.	1.1	10
118	Intramolecular signal transmission in a tetrameric repressor of the IclR family. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15372-15377.	3.3	17
119	Fructose 1-Phosphate Is the Preferred Effector of the Metabolic Regulator Cra of Pseudomonas putida. Journal of Biological Chemistry, 2011, 286, 9351-9359.	1.6	23
120	Struggling to get a universal meningococcal vaccine and novel uses for bacterial toxins in cancer treatment. Microbial Biotechnology, 2010, 3, 359-361.	2.0	0
121	Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environmental Microbiology, 2010, 12, 2873-2884.	1.8	151
122	Catabolite Repression of the TodS/TodT Two-Component System and Effector-Dependent Transphosphorylation of TodT as the Basis for Toluene Dioxygenase Catabolic Pathway Control. Journal of Bacteriology, 2010, 192, 4246-4250.	1.0	23
123	Crystal structure of TtgV in complex with its DNA operator reveals a general model for cooperative DNA binding of tetrameric gene regulators. Genes and Development, 2010, 24, 2556-2565.	2.7	33
124	Compartmentalized Glucose Metabolism in <i>Pseudomonas putida</i> Is Controlled by the PtxS Repressor. Journal of Bacteriology, 2010, 192, 4357-4366.	1.0	38
125	Identification of a Chemoreceptor for Tricarboxylic Acid Cycle Intermediates. Journal of Biological Chemistry, 2010, 285, 23126-23136.	1.6	87
126	Bacterial Sensor Kinases: Diversity in the Recognition of Environmental Signals. Annual Review of Microbiology, 2010, 64, 539-559.	2.9	310

#	Article	IF	CITATIONS
127	The Sensor Kinase TodS Operates by a Multiple Step Phosphorelay Mechanism Involving Two Autokinase Domains. Journal of Biological Chemistry, 2009, 284, 10353-10360.	1.6	34
128	Regulation of Glucose Metabolism in Pseudomonas. Journal of Biological Chemistry, 2009, 284, 21360-21368.	1.6	77
129	The heat, drugs and knockout systems of <i>Microbial Biotechnology</i> . Microbial Biotechnology, 2009, 2, 598-600.	2.0	1
130	PhhR Binds to Target Sequences at Different Distances with Respect to RNA Polymerase in Order to Activate Transcription. Journal of Molecular Biology, 2009, 394, 576-586.	2.0	16
131	Responses of Pseudomonas to small toxic molecules by a mosaic of domains. Current Opinion in Microbiology, 2009, 12, 215-220.	2.3	39
132	The enigma of cytosolic twoâ€component systems: a hypothesis. Environmental Microbiology Reports, 2009, 1, 171-176.	1.0	12
133	Microcalorimetry: a response to challenges in modern biotechnology. Microbial Biotechnology, 2008, 1, 126-136.	2.0	73
134	Hierarchical Binding of the TodT Response Regulator to Its Multiple Recognition Sites at the tod Pathway Operon Promoter. Journal of Molecular Biology, 2008, 376, 325-337.	2.0	29
135	Two Levels of Cooperativeness in the Binding of TodT to the tod Operon Promoter. Journal of Molecular Biology, 2008, 384, 1037-1047.	2.0	22
136	Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. Journal of Experimental Botany, 2008, 59, 3259-3269.	2.4	66
137	Different Modes of Binding of Mono- and Biaromatic Effectors to the Transcriptional Regulator TTGV. Journal of Biological Chemistry, 2007, 282, 16308-16316.	1.6	27
138	Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13774-13779.	3.3	88
139	Crystal Structures of Multidrug Binding Protein TtgR in Complex with Antibiotics and Plant Antimicrobials. Journal of Molecular Biology, 2007, 369, 829-840.	2.0	116
140	The Transcriptional Repressor TtgV Recognizes a Complex Operator as a Tetramer and Induces Convex DNA Bending. Journal of Molecular Biology, 2007, 369, 927-939.	2.0	28
141	Optimization of the Palindromic Order of the TtgR Operator Enhances Binding Cooperativity. Journal of Molecular Biology, 2007, 369, 1188-1199.	2.0	39
142	Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum. Plant Physiology and Biochemistry, 2007, 45, 729-739.	2.8	57
143	Complexity in efflux pump control: crossâ€regulation by the paralogues TtgV and TtgT. Molecular Microbiology, 2007, 66, 1416-1428.	1.2	31
144	The Use of Microcalorimetry to Study Regulatory Mechanisms in Pseudomonas. , 2007, , 255-277.		2

#	Article	IF	CITATIONS
145	The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8191-8196.	3.3	70
146	Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiology Reviews, 2006, 30, 157-186.	3.9	206
147	The IclR family of transcriptional activators and repressors can be defined by a single profile. Protein Science, 2006, 15, 1207-1213.	3.1	45
148	Effector-Repressor Interactions, Binding of a Single Effector Molecule to the Operator-bound TtgR Homodimer Mediates Derepression. Journal of Biological Chemistry, 2006, 281, 7102-7109.	1.6	79
149	Do Th1 or Th2 sequence motifs exist in proteins?. Immunology Letters, 2005, 96, 261-275.	1.1	21
150	Characterization of different strains of poliovirus and influenza virus by differential scanning calorimetry. Biotechnology and Applied Biochemistry, 2005, 41, 241-246.	1.4	19
151	The Multidrug Efflux Regulator TtgV Recognizes a Wide Range of Structurally Different Effectors in Solution and Complexed with Target DNA. Journal of Biological Chemistry, 2005, 280, 20887-20893.	1.6	68
152	Role of Transferrin Receptor from a Neisseria meningitidis tbpB Isotype II Strain in Human Transferrin Binding and Virulence. Infection and Immunity, 2004, 72, 3461-3470.	1.0	26
153	Transferrin-Binding Protein B of Neisseria meningitidis : Sequence-Based Identification of the Transferrin-Binding Site Confirmed by Site-Directed Mutagenesis. Journal of Bacteriology, 2004, 186, 850-857.	1.0	17
154	HIV-1 gp41 and gp160 are hyperthermostable proteins in a mesophilic environment. Characterization of gp41 mutants. FEBS Journal, 2004, 271, 1566-1579.	0.2	21
155	The Use of Microcalorimetric Techniques to Study the Structure and Function of the Transferrin Receptor from Neisseria meningitidis. Principles and Practice, 2004, , 217-230.	0.3	0
156	The use of microcalorimetry to characterize tetanus neurotoxin, pertussis toxin and filamentous haemagglutinin. Biotechnology and Applied Biochemistry, 2003, 38, 241.	1.4	21
157	Insight into the Structure and Function of the Transferrin Receptor from Neisseria meningitidis Using Microcalorimetric Techniques. Journal of Biological Chemistry, 2003, 278, 14712-14722.	1.6	40
158	The Shikimate Pathway and Its Branches in Apicomplexan Parasites. Journal of Infectious Diseases, 2002, 185, S25-S36.	1.9	139
159	Affinity-Purification of Transferrin-Binding Protein B under Nondenaturing Conditions. Protein Expression and Purification, 2002, 24, 323-328.	0.6	5
160	The Structure and Mechanism of the Type II Dehydroquinase from Streptomyces coelicolor. Structure, 2002, 10, 493-503.	1.6	77
161	Sequence Requirements of the ATP-Binding Site within the C-Terminal Nucleotide-Binding Domain of Mouse P-Glycoprotein: Structureâ°'Activity Relationships for Flavonoid Bindingâ€. Biochemistry, 2001, 40, 10382-10391.	1.2	41
162	Biochemical and X-ray crystallographic studies on shikimate kinase: The important structural role of the P-loop lysine. Protein Science, 2001, 10, 1137-1149.	3.1	72

#	Article	IF	CITATIONS
163	Shikimate pathway in apicomplexan parasites. Nature, 1999, 397, 219-220.	13.7	91
164	Shikimate pathway in apicomplexan parasites. Nature, 1999, 397, 220-220.	13.7	10
165	The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction. Nature Structural Biology, 1999, 6, 521-525.	9.7	113
166	The folding and assembly of the dodecameric type II dehydroquinases. Biochemical Journal, 1999, 338, 195-202.	1.7	22
167	The folding and assembly of the dodecameric type II dehydroquinases. Biochemical Journal, 1999, 338, 195.	1.7	10
168	Evidence for the shikimate pathway in apicomplexan parasites. Nature, 1998, 393, 801-805.	13.7	436
169	The three-dimensional structure of shikimate kinase 1 1Edited by K. Nagai. Journal of Molecular Biology, 1998, 278, 983-997.	2.0	80
170	Chemical modification monitored by electrospray mass spectrometry: a rapid and simple method for identifying and studying functional residues in enzymes. Chemical Biology and Drug Design, 1998, 51, 201-209.	1.2	10
171	93 The interaction of shikimate kinase from <i>Erwinia chrystanthemi</i> with substrates. Biochemical Society Transactions, 1997, 25, S627-S627.	1.6	6
172	Crystallization and preliminary X-ray crystallographic analysis of shikimate kinase fromErwinia chrysanthemi. Acta Crystallographica Section D: Biological Crystallography, 1997, 53, 612-614.	2.5	8
173	Phosphoglycerate mutase from Schizosaccharomyces pombe: development of an expression system and characterisation of three histidine mutants of the enzyme. BBA - Proteins and Proteomics, 1996, 1296, 69-75.	2.1	15
174	Identification and purification of a distinct dihydrolipoamide dehydrogenase from pea chloroplasts. Planta, 1996, 200, 195-202.	1.6	18
175	Localization of the Active Site of Type II Dehydroquinases. Journal of Biological Chemistry, 1996, 271, 24492-24497.	1.6	58
176	The use of mass spectrometry to examine the formation and hydrolysis of the phosphorylated form of phosphoglycerate mutase. FEBS Letters, 1995, 359, 192-194.	1.3	24
177	The use of electrospray mass spectrometry to identify an essential arginine residue in type II dehydroquinases. FEBS Letters, 1995, 360, 93-96.	1.3	45