Douglas S Darling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6720923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The EMT Transcription Factor ZEB2 Promotes Proliferation of Primary and Metastatic Melanoma While Suppressing an Invasive, Mesenchymal-Like Phenotype. Cancer Research, 2020, 80, 2983-2995.	0.4	51
2	ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells. Gut, 2019, 68, 2129-2141.	6.1	34
3	ZEB1 protects skeletal muscle from damage and is required for its regeneration. Nature Communications, 2019, 10, 1364.	5.8	40
4	Regulation of muscle atrophy-related genes by the opposing transcriptional activities of ZEB1/CtBP and FOXO3. Nucleic Acids Research, 2018, 46, 10697-10708.	6.5	21
5	ZEB1-induced tumourigenesis requires senescence inhibition via activation of DKK1/mutant p53/Mdm2/CtBP and repression of macroH2A1. Gut, 2017, 66, 666-682.	6.1	33
6	Tumorâ€associated macrophages (TAMs) depend on ZEB1 for their cancerâ€promoting roles. EMBO Journal, 2017, 36, 3336-3355.	3.5	112
7	Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nature Communications, 2017, 8, 1758.	5.8	155
8	Phosphorylation Regulates Functions of ZEB1 Transcription Factor. Journal of Cellular Physiology, 2016, 231, 2205-2217.	2.0	37
9	<i>Porphyromonas gingivalis</i> initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cellular Microbiology, 2016, 18, 844-858.	1.1	66
10	Onset of Spinal Cord Astrocyte Precursor Emigration from the Ventricular Zone Involves the Zeb1 Transcription Factor. Cell Reports, 2016, 17, 1473-1481.	2.9	14
11	Use of multiple time points to model parotid differentiation. Genomics Data, 2015, 5, 82-88.	1.3	1
12	A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation. PLoS ONE, 2015, 10, e0125153.	1.1	12
13	ZEB1 Imposes a Temporary Stage-Dependent Inhibition of Muscle Gene Expression and Differentiation via CtBP-Mediated Transcriptional Repression. Molecular and Cellular Biology, 2013, 33, 1368-1382.	1.1	44
14	ZEB1 Promotes Invasiveness of Colorectal Carcinoma Cells through the Opposing Regulation of uPA and PAI-1. Clinical Cancer Research, 2013, 19, 1071-1082.	3.2	52
15	Model Discrimination in Dynamic Molecular Systems: Application to Parotid De-differentiation Network. Journal of Computational Biology, 2013, 20, 524-539.	0.8	3
16	EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cellular and Molecular Life Sciences, 2012, 69, 3429-3456.	2.4	437
17	Metastatic Progression of Prostate Cancer and E-Cadherin. American Journal of Pathology, 2011, 179, 400-410.	1.9	133
18	Novel ZEB1 expression in bladder tumorigenesis. BJU International, 2011, 107, 656-663.	1.3	49

DOUGLAS S DARLING

#	Article	IF	CITATIONS
19	A NOTCH3-Mediated Squamous Cell Differentiation Program Limits Expansion of EMT-Competent Cells That Express the ZEB Transcription Factors. Cancer Research, 2011, 71, 6836-6847.	0.4	99
20	Cell Type–Specific Transcriptome Analysis Reveals a Major Role for Zeb1 and miR-200b in Mouse Inner Ear Morphogenesis. PLoS Genetics, 2011, 7, e1002309.	1.5	90
21	Mesenchymal cell remodeling during mouse secondary palate reorientation. Developmental Dynamics, 2010, 239, 2110-2117.	0.8	30
22	The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 2009, 11, 1487-1495.	4.6	1,547
23	Analysis of Zfhx1a mutant mice reveals palatal shelf contact-independent medial edge epithelial differentiation during palate fusion. Cell and Tissue Research, 2008, 333, 29-38.	1.5	33
24	ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Modern Pathology, 2008, 21, 912-923.	2.9	123
25	Zeb1 Mutant Mice as a Model of Posterior Corneal Dystrophy. , 2008, 49, 1843.		51
26	The ZFHX1A gene is differentially autoregulated by its isoforms. Biochemical and Biophysical Research Communications, 2007, 360, 621-626.	1.0	15
27	Helicobacter pylori infection in people who are intellectually and developmentally disabled: A review. Special Care in Dentistry, 2007, 27, 127-133.	0.4	24
28	MUC1 splice variants in human ocular surface tissues: Possible differences between dry eye patients and normal controls. Experimental Eye Research, 2006, 83, 493-501.	1.2	55
29	The Transcription Factor ZEB1 Is Aberrantly Expressed in Aggressive Uterine Cancers. Cancer Research, 2006, 66, 3893-3902.	0.4	156
30	Combination of a zinc finger and homeodomain required for protein-interaction. Molecular Biology Reports, 2003, 30, 199-206.	1.0	12
31	Expression of Zfhep/Ĵ EF1 protein in palate, neural progenitors, and differentiated neurons. Gene Expression Patterns, 2003, 3, 709-717.	0.3	44
32	Cell-specific phosphorylation of Zfhep transcription factor. Biochemical and Biophysical Research Communications, 2002, 296, 368-373.	1.0	38
33	T3-activation of the rat growth hormone gene is inhibited by a zinc finger/homeodomain protein. Molecular and Cellular Endocrinology, 2001, 181, 131-137.	1.6	16
34	Developmental and functional evidence of a role for Zfhep in neural cell development. Molecular Brain Research, 2001, 96, 59-67.	2.5	31
35	Disulfide Bonds of GM2 Synthase Homodimers. Journal of Biological Chemistry, 2000, 275, 41476-41486.	1.6	29
36	N- and C-terminal Domains Direct Cell Type-specific Sorting of Chromogranin A to Secretory Granules. Journal of Biological Chemistry, 2000, 275, 7743-7748.	1.6	49

DOUGLAS S DARLING

#	Article	IF	CITATIONS
37	A zinc finger homeodomain transcription factor binds specific thyroid hormone response elements. Molecular and Cellular Endocrinology, 1998, 139, 25-35.	1.6	26
38	β1,4 N-Acetylgalactosaminyltransferase (GM2/GD2/GA2 synthase) forms homodimers in the endoplasmic reticulum: a strategy to test for dimerization of Golgi membrane proteins. Glycobiology, 1997, 7, 987-996.	1.3	24
39	Cloned β1,4N-acetylgalactosaminyltransferase: subcellular localization and formation of disulfide bonded species. Glycoconjugate Journal, 1996, 13, 213-223.	1.4	24
40	An N-terminal hydrophobic peak is the sorting signal of regulated secretory proteins. FEBS Letters, 1995, 361, 8-12.	1.3	36
41	3,5,3′-Triiodothyronine (T ₃) Receptor-Auxiliary Protein (TRAP) Binds DNA and Forms Heterodimers with the T ₃ Receptor. Molecular Endocrinology, 1991, 5, 73-84.	3.7	131
42	3,5,3′-Triiodothyronine Receptor Auxiliary Protein (TRAP) Enhances Receptor Binding by Interactions within the Thyroid Hormone Response Element. Molecular Endocrinology, 1991, 5, 85-93.	3.7	80
43	Thyroid Hormone Receptor Mutations that Interfere with Transcriptional Activation also Interfere with Receptor Interaction with a Nuclear Protein. Molecular Endocrinology, 1991, 5, 94-99.	3.7	100
44	Binding of Thyroid Hormone Receptors to the Rat Thyrotropin-β Gene. Molecular Endocrinology, 1989, 3, 1359-1368.	3.7	68
45	Binding of thyroid hormone receptor-associated factors to rGH gene 5′ flanking sequences. Molecular and Cellular Endocrinology, 1988, 57, 123-129.	1.6	8
46	Identification of a Rat c-erbAα-Related Protein Which Binds Deoxyribonucleic Acid but does not Bind Thyroid Hormone. Molecular Endocrinology, 1988, 2, 893-901.	3.7	264
47	Effects of triiodothyronine and propylthiouracil on thyroid function and smoltification of coho salmon (Oncorhynchus kisutch). Fish Physiology and Biochemistry, 1987, 4, 121-135.	0.9	25
48	Nuclear receptors for l-triiodothyronine in trout erythrocytes. General and Comparative Endocrinology, 1987, 65, 149-160.	0.8	24
49	Evolution of Thyroid Function and Its Control in Lower Vertebrates. American Zoologist, 1983, 23, 697-707.	0.7	52