Borislav Savkovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6719995/publications.pdf Version: 2024-02-01

ROPISLAN SAVKOVIC

#	Article	IF	CITATIONS
1	Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing. Journal of Intelligent Manufacturing, 2013, 24, 755-762.	7.3	116
2	Using the temperature method for the prediction of tool life in sustainable production. Measurement: Journal of the International Measurement Confederation, 2019, 133, 320-327.	5.0	27
3	Multi-output fuzzy inference system for modeling cutting temperature and tool life in face milling. Journal of Mechanical Science and Technology, 2014, 28, 4247-4256.	1.5	26
4	Application of an Adaptive "Neuro-Fuzzy―Inference System in Modeling Cutting Temperature during Hard Turning. Applied Sciences (Switzerland), 2019, 9, 3739.	2.5	19
5	Comparative Characteristics of Ductile Iron and Austempered Ductile Iron Modeled by Neural Network. Materials, 2019, 12, 2864.	2.9	17
6	Application of Machine Learning in the Control of Metal Melting Production Process. Applied Sciences (Switzerland), 2020, 10, 6048.	2.5	14
7	Electricity Usage Efficiency and Electricity Demand Modeling in the Case of Germany and the UK. Applied Sciences (Switzerland), 2020, 10, 2291.	2.5	4
8	Investigation an assisting electrode powder mixed electrical discharge machining of nonconductive ceramic. International Journal of Advanced Manufacturing Technology, 2022, 118, 2419-2435.	3.0	4
9	Tensile and fatigue properties, machinability and machined surface roughness of Al-Si-Cu alloys. Revista Materia, 2019, 24, .	0.2	4
10	An Analytical Study of Energy Partition in Grinding. Key Engineering Materials, 0, 686, 80-85.	0.4	2
11	ARTIFICIAL INTELIGENCE APPROACHE TO MODELING OF CUTTING FORCE AND TOOL WEAR RELATIONSHIPS DURING DRY MACHINING. Journal of Production Engineering, 2018, 21, 13-18.	0.1	2
12	Application of Neuro-Fuzzy Systems for Modeling Surface Roughness Parameters for Difficult-to-Cut-Steel. Solid State Phenomena, 0, 261, 277-284.	0.3	1
13	Cutting Force during Grinding Determined by Regression Analysis and Genetic Algorithms. Key Engineering Materials, 2016, 686, 13-18.	0.4	0
14	Investigation of Functional Dependency between the Characteristics of the Machining Process and Flatness Error Measured on a CMM. Measurement Science Review, 2021, 21, 158-167.	1.0	0
15	Energy efficiency cart modeling of solar energy collectors by genetic programming. Thermal Science, 2016, 20, 471-479.	1.1	0
16	Modelling of the High-Chromium Cast Iron Surface Roughness. Lecture Notes in Mechanical Engineering, 2021, , 523-534.	0.4	0