Chia-Hung Christine Hsiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6719896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of a Phosphoantigen Prodrug that Potently Activates Vγ9Vδ2 T-Lymphocytes. Chemistry and Biology, 2014, 21, 945-954.	6.0	86
2	A <scp>HT</scp> / <scp>PEXEL</scp> Motif in <i>Toxoplasma</i> Dense Granule Proteins is a Signal for Protein Cleavage but not Export into the Host Cell. Traffic, 2013, 14, 519-531.	2.7	54
3	The effects of macrophage source on the mechanism of phagocytosis and intracellular survival of Leishmania. Microbes and Infection, 2011, 13, 1033-1044.	1.9	44
4	The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. FASEB Journal, 2017, 31, 4697-4706.	0.5	41
5	Mixed Aryl Phosphonate Prodrugs of a Butyrophilin Ligand. ACS Medicinal Chemistry Letters, 2017, 8, 914-918.	2.8	38
6	HMBPP Analog Prodrugs Bypass Energy-Dependent Uptake To Promote Efficient BTN3A1-Mediated Malignant Cell Lysis by Vγ9Vδ2 T Lymphocyte Effectors. Journal of Immunology, 2016, 197, 419-428.	0.8	33
7	Phosphonamidate Prodrugs of a Butyrophilin Ligand Display Plasma Stability and Potent Vγ9 Vδ2 T Cell Stimulation. Journal of Medicinal Chemistry, 2018, 61, 8658-8669.	6.4	32
8	The major surface protease (MSP or GP63) in the intracellular amastigote stage of Leishmania chagasi. Molecular and Biochemical Parasitology, 2008, 157, 148-159.	1.1	31
9	Phosphinophosphonates and Their Tris-pivaloyloxymethyl Prodrugs Reveal a Negatively Cooperative Butyrophilin Activation Mechanism. Journal of Medicinal Chemistry, 2017, 60, 2373-2382.	6.4	28
10	Isoprenoid Metabolism as a Therapeutic Target in Gram-Negative Pathogens. Current Topics in Medicinal Chemistry, 2010, 10, 1858-1871.	2.1	27
11	Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chemical Biology, 2022, 29, 985-995.e5.	5.2	19
12	A power law function describes the time- and dose-dependency of Vγ9Vδ2 T cell activation by phosphoantigens. Biochemical Pharmacology, 2018, 158, 298-304.	4.4	18
13	Leishmania chagasi: A tetracycline-inducible cell line driven by T7 RNA polymerase. Experimental Parasitology, 2007, 116, 205-213.	1.2	17
14	Evaluation of a 7â€Methoxycoumarinâ€3â€carboxylic Acid Ester Derivative as a Fluorescent, Cellâ€Cleavable, Phosphonate Protecting Group. ChemBioChem, 2016, 17, 52-55.	2.6	13
15	Stability and Efficiency of Mixed Aryl Phosphonate Prodrugs. ChemMedChem, 2019, 14, 1597-1603.	3.2	13
16	Synthesis and Bioactivity of the Alanyl Phosphonamidate Stereoisomers Derived from a Butyrophilin Ligand. ACS Medicinal Chemistry Letters, 2019, 10, 1284-1289.	2.8	11
17	Probing the Ligand-Binding Pocket of BTN3A1. Journal of Medicinal Chemistry, 2019, 62, 6814-6823.	6.4	11
18	Potent double prodrug forms of synthetic phosphoantigens. Bioorganic and Medicinal Chemistry, 2020, 28, 115666.	3.0	6

#	Article	IF	CITATIONS
19	Synthesis and Metabolism of BTN3A1 Ligands: Studies on Diene Modifications to the Phosphoantigen Scaffold. ACS Medicinal Chemistry Letters, 2022, 13, 164-170.	2.8	5
20	Synthesis and Metabolism of BTN3A1 Ligands: Studies on Modifications of the Allylic Alcohol. ACS Medicinal Chemistry Letters, 2021, 12, 136-142.	2.8	4
21	Efficiency of bis-amidate phosphonate prodrugs. Bioorganic and Medicinal Chemistry Letters, 2022, 66, 128724.	2.2	4
22	Incorporation of a FRET pair within a phosphonate diester. Bioorganic Chemistry, 2021, 114, 105048.	4.1	3
23	Synthesis and Biological Evaluation of a Phosphonate Phosphoantigen Prodrug. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 751-753.	1.6	1