Craig L Perkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6719815/publications.pdf Version: 2024-02-01

CDAIC | DEDKING

#	Article	IF	CITATIONS
1	19·9%â€efficient ZnO/CdS/CuInGaSe ² solar cell with 81·2% fill factor. Progress in Photovoltaics: Research and Applications, 2008, 16, 235-239.	8.1	1,888
2	Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2003, 11, 225-230.	8.1	909
3	Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nature Energy, 2019, 4, 837-845.	39.5	243
4	Atmosphericâ€Pressure Chemical Vapor Deposition of Iron Pyrite Thin Films. Advanced Energy Materials, 2012, 2, 1124-1135.	19.5	147
5	Textured nanoporous Mo:BiVO ₄ photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution. Energy and Environmental Science, 2016, 9, 1412-1429.	30.8	135
6	Chemical vapor deposition-formedp-type ZnO thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1342-1346.	2.1	125
7	Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films. ACS Nano, 2016, 10, 3302-3311.	14.6	118
8	Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. Journal of Applied Physics, 2007, 102, .	2.5	114
9	Improved performance in ZnO/CdS/CuGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2003, 11, 535-541.	8.1	110
10	Intrinsic surface passivation of CdTe. Journal of Applied Physics, 2015, 118, .	2.5	106
11	Thin-Film Solar Cells with 19% Efficiency by Thermal Evaporation of CdSe and CdTe. ACS Energy Letters, 2020, 5, 892-896.	17.4	105
12	Control of conduction type in Al- and N-codoped ZnO thin films. Applied Physics Letters, 2005, 86, 202106.	3.3	83
13	Physical characterization of thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12, 177-217.	8.1	80
14	Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphonic Acid Moieties. Journal of Physical Chemistry C, 2009, 113, 18276-18286.	3.1	79
15	An inversion layer at the surface of n-type iron pyrite. Energy and Environmental Science, 2014, 7, 1974.	30.8	75
16	Comparison of device performance and measured transport parameters in widely-varying Cu(In,Ga) (Se,S) solar cells. Progress in Photovoltaics: Research and Applications, 2006, 14, 25-43.	8.1	70
17	Development of radio-frequency magnetron sputtered indium molybdenum oxide. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1092-1097.	2.1	66
18	Tailoring MgZnO/CdSeTe Interfaces for Photovoltaics. IEEE Journal of Photovoltaics, 2019, 9, 888-892.	2.5	65

CRAIG L PERKINS

#	Article	IF	CITATIONS
19	Dielectric function spectra and critical-point energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV. Journal of Applied Physics, 2012, 111, .	2.5	53
20	Surfactant-assisted growth of CdS thin films for photovoltaic applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 497-504.	2.1	49
21	Correlation Between Measured Minority-Carrier Lifetime and \$hbox{Cu}(hbox{In},) Tj ETQq1 1 0.784314 rgBT /C 2957-2963.	verlock 10 3.0) Tf 50 667 49
22	3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule, 2021, 5, 1057-1073.	24.0	48
23	Synthesis of LaWN ₃ nitride perovskite with polar symmetry. Science, 2021, 374, 1488-1491.	12.6	43
24	Quantitative analysis of graded Cu(In1â^'x,Gax)Se2 thin films by AES, ICP-OES, and EPMA. Applied Surface Science, 2010, 257, 878-886.	6.1	33
25	Two-Dimensional Cadmium Chloride Nanosheets in Cadmium Telluride Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 20561-20565.	8.0	32
26	Impact of Hole Transport Layer Surface Properties on the Morphology of a Polymerâ€Fullerene Bulk Heterojunction. Advanced Energy Materials, 2014, 4, 1301879.	19.5	28
27	SnO ₂ -Catalyzed Oxidation in High-Efficiency CdTe Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 13003-13010.	8.0	22
28	Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1120-1124.	1.2	21
29	Growth of amorphous and epitaxial ZnSiP ₂ –Si alloys on Si. Journal of Materials Chemistry C, 2018, 6, 2696-2703.	5.5	18
30	Interfaces Between C <roman>d</roman> T <roman>e</roman> and ALD A<roman>l</roman> ₂ O ₃ . IEEE Journal of Photovoltaics, 2018, 8, 1858-1861.	2.5	18
31	Non-Conjugated Polymers for Organic Photovoltaics: Physical and Optoelectronic Properties of Poly(perylene diimides). Journal of Physical Chemistry C, 2010, 114, 6784-6790.	3.1	16
32	Microscopic Analysis of Residuals on Polycrystalline CdTe Following Wet CdCl ₂ Treatment. Materials Research Society Symposia Proceedings, 2001, 668, 1.	0.1	15
33	Surface Passivation of CdTe Single Crystals. IEEE Journal of Photovoltaics, 2015, 5, 382-385.	2.5	15
34	Synthesis of Lanthanum Tungsten Oxynitride Perovskite Thin Films. Advanced Electronic Materials, 2019, 5, 1900214.	5.1	15
35	Back-Surface Passivation of CdTe Solar Cells Using Solution-Processed Oxidized Aluminum. ACS Applied Materials & Materials & Comparison (1997) Applied Materials & Comparison (1997) App	8.0	15
36	Thermal Stability of Copper–Nickel and Copper–Nickel Silicide Contacts for Crystalline Silicon. ACS Applied Energy Materials, 2018, 1, 2841-2848.	5.1	14

CRAIG L PERKINS

#	Article	IF	CITATIONS
37	Combinatorial Nitrogen Gradients in Sputtered Thin Films. ACS Combinatorial Science, 2018, 20, 436-442.	3.8	13
38	Measured minority-carrier lifetime and CIGS device performance. , 2009, , .		12
39	Mechanisms for long carrier lifetime in Cd(Se)Te double heterostructures. Applied Physics Letters, 2021, 118, .	3.3	12
40	Strong Attraction and Adhesion Forces of Dust Particles by System Voltages of Photovoltaic Modules. IEEE Journal of Photovoltaics, 2019, 9, 1121-1127.	2.5	11
41	Se diffusion in CdTe thin films for photovoltaics. Journal Physics D: Applied Physics, 2021, 54, 025501.	2.8	11
42	Comparative <i>operando</i> XPS studies of quasi-Fermi level splitting and open-circuit voltage in CZTSe/CdS and CIGS/CdS junctions and device structures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	10
43	High-Temperature Nucleation of GaP on V-Grooved Si. Crystal Growth and Design, 2020, 20, 6745-6751.	3.0	10
44	Exceeding 200 ns Lifetimes in Polycrystalline CdTe Solar Cells. Solar Rrl, 2021, 5, 2100173.	5.8	10
45	Influence of Protection Layers on Thermal Stability of Nitride Thin Films. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100178.	2.4	9
46	Boron Phosphide Films by Reactive Sputtering: Searching for a Pâ€Type Transparent Conductor. Advanced Materials Interfaces, 2022, 9, .	3.7	8
47	Laboratory Studies of Particle Cementation and PV module Soiling. , 2017, , .		6
48	NREL Efforts to Address Soiling on PV Modules. , 2017, , .		6
49	<i>In situ</i> Al ₂ O ₃ incorporation enhances the efficiency of CuIn(S,Se) ₂ solar cells prepared from molecular-ink solutions. Journal of Materials Chemistry A, 2021, 9, 10419-10426.	10.3	6
50	Largeâ€Area (Ag,Cu)(In,Ga)Se ₂ Thinâ€Film Solar Cells with Increased Bandgap and Reduced Voltage Losses Realized with Bulk Defect Reduction and Frontâ€Grading of the Absorber Bandgap. Solar Rrl, 2022, 6, .	5.8	6
51	Time-Resolved Switching Studies in a-Si:H and Related Films. Materials Research Society Symposia Proceedings, 2003, 762, 241.	0.1	4
52	Investigation of the effect of I-ZnO window layer on the device performance of the Cd-free CIGS based solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	3
53	Oxidative segregation of Group V dopants in CdTe solar cells. , 2019, , .		2
54	Storage conditions for high-accuracy composition standards of AlGaAs. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1267.	1.6	1

CRAIG L PERKINS

#	Article	IF	CITATIONS
55	Heteroepitaxial growth of CZTS. , 2014, , .		1
56	Semi-insulating Sn-Zr-O: Tunable resistance buffer layers. Applied Physics Letters, 2015, 106, 092106.	3.3	1
57	Nucleation of high-quality GaP on Si through v-groove Si substrates. , 2020, , .		1
58	A liquid-phase quartz crystal microbalance for photovoltaics research. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
59	A new class of acceptor polymers for applications in organic PV. , 2009, , .		0
60	Ag nanowire based transparent conductor for CIGS PV. , 2011, , .		0
61	Thermal annealing affects vertical morphology, doping and defect density in BHJ OPV devices. , 2014, , .		0
62	Photoelectron spectroscopy, and photovoltaic device study of Cu <inf>2</inf> ZnSnSe <inf>4</inf> and ZnO <inf>x</inf> S <inf>1−x</inf> buffer layer interface. , 2014, , .		0
63	A Novel Method to Investigate Stoichiometry and Performance of Buried Passivated Contacts Utilizing Time-of-Flight SIMS. , 2017, , .		0
64	High Efficiency Evaporated CdSeTe/CdTe Solar Cells with and without MgZnO Buffer Layer. , 2020, , .		0