Reyes Sierra-Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6719608/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere, 2008, 72, 1588-1593.	4.2	346
2	Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnology and Bioengineering, 2006, 95, 1148-1157.	1.7	310
3	Microbial transformation and degradation of polychlorinated biphenyls. Environmental Pollution, 2008, 155, 1-12.	3.7	272
4	Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Research, 2007, 41, 1253-1262.	5.3	230
5	Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnology and Bioengineering, 2005, 92, 810-819.	1.7	177
6	Anaerobic Biotransformation of Roxarsone and Related N-Substituted Phenylarsonic Acids. Environmental Science & Technology, 2006, 40, 2951-2957.	4.6	170
7	Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems. Science of the Total Environment, 2011, 412-413, 380-385.	3.9	164
8	Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. Chemosphere, 2013, 91, 22-27.	4.2	149
9	Microbial degradation of chlorinated phenols. Reviews in Environmental Science and Biotechnology, 2008, 7, 211-241.	3.9	137
10	Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge. Journal of Hazardous Materials, 2013, 260, 278-285.	6.5	134
11	Microbial degradation of chlorinated benzenes. Biodegradation, 2008, 19, 463-480.	1.5	118
12	Microbial degradation of chlorinated dioxins. Chemosphere, 2008, 71, 1005-1018.	4.2	112
13	Reductive Defluorination of Perfluorooctane Sulfonate. Environmental Science & Technology, 2008, 42, 3260-3264.	4.6	108
14	Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles. Water Research, 2014, 58, 160-168.	5.3	104
15	The effect of aromatic structure on the inhibition of acetoclastic methanogenesis in granular sludge. Applied Microbiology and Biotechnology, 1991, 34, 544.	1.7	102
16	Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge. Chemosphere, 2008, 70, 462-474.	4.2	93
17	Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. Journal of Hazardous Materials, 2011, 192, 1572-1579.	6.5	90
18	Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Research, 2009. 43. 3177-3186.	5.3	88

#	Article	IF	CITATIONS
19	Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment. Bioresource Technology, 2012, 108, 300-304.	4.8	84
20	Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. Journal of Hazardous Materials, 2017, 336, 57-64.	6.5	81
21	Arsenite and Ferrous Iron Oxidation Linked to Chemolithotrophic Denitrification for the Immobilization of Arsenic in Anoxic Environments. Environmental Science & Technology, 2009, 43, 6585-6591.	4.6	80
22	Toxicity of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in anaerobic sludge. Chemosphere, 2006, 62, 121-127.	4.2	77
23	Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environmental Sciences: Processes and Impacts, 2016, 18, 1236-1246.	1.7	77
24	Biobleaching of oxygen delignified kraft pulp by several white rot fungal strains. Journal of Biotechnology, 1997, 53, 237-251.	1.9	72
25	Anaerobic Oxidation of Arsenite Linked to Chlorate Reduction. Applied and Environmental Microbiology, 2010, 76, 6804-6811.	1.4	72
26	Application and Validation of an Impedance-Based Real Time Cell Analyzer to Measure the Toxicity of Nanoparticles Impacting Human Bronchial Epithelial Cells. Environmental Science & Technology, 2012, 46, 10271-10278.	4.6	71
27	Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2. Journal of Environmental Management, 2015, 154, 78-85.	3.8	71
28	Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production. Renewable Energy, 2017, 108, 410-416.	4.3	71
29	Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions. Biotechnology Letters, 2014, 36, 547-551.	1.1	69
30	Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere, 2013, 93, 1201-1206.	4.2	67
31	Effect of sound frequency and initial concentration on the sonochemical degradation of perfluorooctane sulfonate (PFOS). Journal of Hazardous Materials, 2015, 300, 662-669.	6.5	67
32	Pre-exposure to nitrite in the absence of ammonium strongly inhibits anammox. Water Research, 2014, 48, 52-60.	5.3	66
33	Inhibition of anaerobic ammonium oxidation by heavy metals. Journal of Chemical Technology and Biotechnology, 2015, 90, 830-837.	1.6	66
34	Treatment of perfluorooctane sulfonic acid (PFOS) using a large-scale sonochemical reactor. Separation and Purification Technology, 2018, 194, 104-110.	3.9	66
35	Pathways of reductive 2,4â€dinitroanisole (DNAN) biotransformation in sludge. Biotechnology and Bioengineering, 2013, 110, 1595-1604.	1.7	63
36	Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium. Environmental Science & Technology, 2016, 50, 1492-1500.	4.6	63

#	Article	IF	CITATIONS
37	Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments. Environmental Science: Nano, 2015, 2, 227-244.	2.2	62
38	Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere, 2008, 71, 114-122.	4.2	59
39	Nitrate and nitrite inhibition of methanogenesis during denitrification in granular biofilms and digested domestic sludges. Biodegradation, 2009, 20, 801-812.	1.5	58
40	Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions. Water Research, 2014, 66, 242-253.	5.3	58
41	Effect of chemical structure on the sonochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environmental Science: Water Research and Technology, 2016, 2, 975-983.	1.2	57
42	Sonochemical degradation of perfluorinated chemicals in aqueous film-forming foams. Journal of Hazardous Materials, 2016, 317, 275-283.	6.5	56
43	Biotransformation and Degradation of the Insensitive Munitions Compound, 3-Nitro-1,2,4-triazol-5-one, by Soil Bacterial Communities. Environmental Science & Technology, 2015, 49, 5681-5688.	4.6	54
44	Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint inÂvivo developmental and behavioral assay. Chemosphere, 2016, 148, 361-368.	4.2	53
45	Methanogenic Inhibition by Arsenic Compounds. Applied and Environmental Microbiology, 2004, 70, 5688-5691.	1.4	51
46	Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere, 2005, 59, 1219-1228.	4.2	51
47	Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnology and Bioengineering, 2007, 96, 1073-1082.	1.7	51
48	Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures. FEMS Microbiology Ecology, 2009, 68, 72-85.	1.3	51
49	Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites. Journal of Hazardous Materials, 2013, 262, 281-287.	6.5	49
50	Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds. Journal of Hazardous Materials, 2010, 175, 352-358.	6.5	47
51	Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles. Chemosphere, 2011, 84, 1401-1407.	4.2	47
52	Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. Journal of Environmental Management, 2014, 135, 110-117.	3.8	46
53	(Bio)transformation of 2,4-dinitroanisole (DNAN) in soils. Journal of Hazardous Materials, 2016, 304, 214-221.	6.5	46
54	Fungal Biotransformation Products of Dehydroabietic Acid. Journal of Natural Products, 2007, 70, 154-159.	1.5	45

#	Article	IF	CITATIONS
55	Fungal bioleaching of metals in preservative-treated wood. Process Biochemistry, 2007, 42, 798-804.	1.8	45
56	Removal of copper, chromium and arsenic from preservative-treated wood by chemical extraction-fungal bioleaching. Waste Management, 2009, 29, 1885-1891.	3.7	45
57	Starved anammox cells are less resistant to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>NO</mml:mtext></mml:mrow><mm inhibition. Water Research. 2014. 65. 170-176.</mm </mml:msubsup></mml:mrow></mml:math 	l:m͡ti\$2 <td>1ml:mn><min< td=""></min<></td>	1ml:mn> <min< td=""></min<>
58	Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. Journal of Hazardous Materials, 2015, 283, 755-763.	6.5	45
59	Infrared spectroscopy analysis of hemp (Cannabis sativa) after selective delignification by Bjerkandera sp. at different nitrogen levels. Enzyme and Microbial Technology, 2001, 28, 550-559.	1.6	44
60	Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor. Biotechnology and Bioengineering, 2016, 113, 522-530.	1.7	44
61	Elimination and detoxification of softwood extractives by white-rot fungi. Journal of Biotechnology, 2000, 80, 231-240.	1.9	43
62	Stoichiometric and molecular evidence for the enrichment of anaerobic ammonium oxidizing bacteria from wastewater treatment plant sludge samples. Chemosphere, 2011, 84, 1262-1269.	4.2	43
63	Anaerobic Biotransformation of Organoarsenical Pesticides Monomethylarsonic Acid and Dimethylarsinic Acid. Journal of Agricultural and Food Chemistry, 2006, 54, 3959-3966.	2.4	42
64	Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: Influence on extractive contents, pulping process parameters, paper quality and effluent toxicity. Bioresource Technology, 2007, 98, 302-311.	4.8	41
65	Sono-chemical treatment of per- and poly-fluoroalkyl compounds in aqueous film-forming foams by use of a large-scale multi-transducer dual-frequency based acoustic reactor. Ultrasonics Sonochemistry, 2018, 45, 213-222.	3.8	41
66	Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). Journal of Hazardous Materials, 2018, 343, 340-346.	6.5	41
67	Degradation and detoxification of softwood extractives by sapstain fungi. Bioresource Technology, 2000, 71, 13-20.	4.8	40
68	ACUTE TOXICITY OF ARSENIC TO DAPHNIA PULEX: INFLUENCE OF ORGANIC FUNCTIONAL GROUPS AND OXIDATION STATE. Environmental Toxicology and Chemistry, 2007, 26, 1532.	2.2	40
69	Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge. Water Research, 2010, 44, 2153-2162.	5.3	40
70	The continuous anaerobic treatment of pulping wastewaters. Journal of Bioscience and Bioengineering, 1990, 70, 119-127.	0.9	39
71	Role of Organic Acids in the Manganese-Independent Biobleaching System of <i>Bjerkandera</i> sp. Strain BOS55. Applied and Environmental Microbiology, 1998, 64, 2409-2417.	1.4	38
72	Effect of initial sulfide concentration on sulfide and phenol oxidation under denitrifying conditions. Chemosphere, 2009, 74, 200-205.	4.2	38

#	Article	IF	CITATIONS
73	Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces. Environmental Chemistry, 2015, 12, 74.	0.7	38
74	Sequential anaerobic-aerobic biodegradation of emerging insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO). Chemosphere, 2017, 167, 478-484.	4.2	38
75	Modelling Organosolv Pulping of Hemp. Holzforschung, 1994, 48, 415-422.	0.9	37
76	Continuous reduction of tellurite to recoverable tellurium nanoparticles using an upflow anaerobic sludge bed (UASB) reactor. Water Research, 2017, 108, 189-196.	5.3	37
77	Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron. Journal of Hazardous Materials, 2016, 308, 97-105.	6.5	35
78	Removal of Copper in an Integrated Sulfate Reducing Bioreactorâ^'Crystallization Reactor System. Environmental Science & Technology, 2007, 41, 1426-1431.	4.6	34
79	Anaerobic microbial mobilization and biotransformation of arsenate adsorbed onto activated alumina. Water Research, 2005, 39, 199-209.	5.3	32
80	Removal of TiO2 nanoparticles by porous media: Effect of filtration media and water chemistry. Chemical Engineering Journal, 2013, 217, 212-220.	6.6	31
81	Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zeroâ€valent iron. Biotechnology and Bioengineering, 2010, 107, 933-942.	1.7	30
82	The role of pH on the resistance of resting―and active anammox bacteria to NO ₂ ^{â^'} inhibition. Biotechnology and Bioengineering, 2014, 111, 1949-1956.	1.7	30
83	High pH (and not free ammonia) is responsible for Anammox inhibition in mildly alkaline solutions with excess of ammonium. Biotechnology Letters, 2014, 36, 1981-1986.	1.1	29
84	Simultaneous sulfide and acetate oxidation under denitrifying conditions using an inverse fluidized bed reactor. Journal of Chemical Technology and Biotechnology, 2008, 83, 1197-1203.	1.6	28
85	Anoxic oxidation of arsenite linked to chemolithotrophic denitrification in continuous bioreactors. Biotechnology and Bioengineering, 2010, 105, 909-917.	1.7	28
86	Inorganic nanoparticles enhance the production of reactive oxygen species (ROS) during the autoxidation of I-3,4-dihydroxyphenylalanine (I-dopa). Chemosphere, 2011, 85, 19-25.	4.2	28
87	Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors. Water Science and Technology, 2006, 54, 179-185.	1.2	26
88	Continuous removal and recovery of palladium in an upflow anaerobic granular sludge bed (<scp>UASB</scp>) reactor. Journal of Chemical Technology and Biotechnology, 2016, 91, 1183-1189.	1.6	26
89	Facile Reduction of Arsenate in Methanogenic Sludge. Biodegradation, 2004, 15, 185-196.	1.5	25
90	Microbial transformation of chlorinated benzoates. Reviews in Environmental Science and Biotechnology, 2008, 7, 191-210.	3.9	25

6

#	Article	IF	CITATIONS
91	Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria. Chemosphere, 2016, 144, 2360-2367.	4.2	24
92	Reduction of bromate by biogenic sulfide produced during microbial sulfur disproportionation. Biodegradation, 2010, 21, 235-244.	1.5	23
93	Long term performance of an arsenite-oxidizing-chlorate-reducing microbial consortium in an upflow anaerobic sludge bed (UASB) bioreactor. Bioresource Technology, 2011, 102, 5010-5016.	4.8	23
94	Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE140- human bronchial epithelial cells. Environmental Research, 2018, 164, 452-458.	3.7	23
95	The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina. Biotechnology and Bioengineering, 2010, 107, 786-794.	1.7	22
96	Interactions of inorganic oxide nanoparticles with sewage biosolids. Water Science and Technology, 2012, 66, 1821-1827.	1.2	22
97	Elemental copper nanoparticle toxicity to different trophic groups involved in anaerobic and anoxic wastewater treatment processes. Science of the Total Environment, 2015, 512-513, 308-315.	3.9	21
98	Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage. Journal of Hazardous Materials, 2016, 317, 335-343.	6.5	21
99	Ecotoxicity assessment of ionic As(III), As(V), In(III) and Ga(III) species potentially released from novel III-V semiconductor materials. Ecotoxicology and Environmental Safety, 2017, 140, 30-36.	2.9	21
100	Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe). Chemosphere, 2016, 162, 131-138.	4.2	20
101	Gallium arsenide (GaAs) leaching behavior and surface chemistry changes in response to pH and O2. Waste Management, 2018, 77, 1-9.	3.7	20
102	Zebrafish embryo toxicity of anaerobic biotransformation products from the insensitive munitions compound 2,4â€dinitroanisole. Environmental Toxicology and Chemistry, 2016, 35, 2774-2781.	2.2	19
103	Elemental copper nanoparticle toxicity to anaerobic ammonium oxidation and the influence of ethylene diamine-tetra acetic acid (EDTA) on copper toxicity. Chemosphere, 2017, 184, 730-737.	4.2	19
104	Microbial Enrichment Culture Responsible for the Complete Oxidative Biodegradation of 3-Amino-1,2,4-triazol-5-one (ATO), the Reduced Daughter Product of the Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). Environmental Science & Technology, 2019, 53, 12648-12656.	4.6	18
105	Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). Chemosphere, 2020, 239, 124823.	4.2	18
106	Microbial toxicity of gallium- and indium-based oxide and arsenide nanoparticles. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 168-178.	0.9	18
107	Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors. Biodegradation, 2012, 23, 133-143.	1.5	17
108	Fate of fluorescent core-shell silica nanoparticles during simulated secondary wastewater treatment. Water Research, 2015, 77, 170-178.	5.3	17

#	Article	IF	CITATIONS
109	Recovery of palladium(II) by methanogenic granular sludge. Chemosphere, 2016, 144, 745-753.	4.2	17
110	Microbial toxicity and characterization of DNAN (bio)transformation product mixtures. Chemosphere, 2016, 154, 499-506.	4.2	16
111	Abiotic reduction of insensitive munition compounds by sulfate green rust. Environmental Chemistry, 2018, 15, 259.	0.7	16
112	Adsorption and oxidation of 3-nitro-1,2,4-triazole-5-one (NTO) and its transformation product (3-amino-1,2,4-triazole-5-one, ATO) at ferrihydrite and birnessite surfaces. Environmental Pollution, 2018, 240, 200-208.	3.7	16
113	Anaerobic degradation of citrate under sulfate reducing and methanogenic conditions. Biodegradation, 2009, 20, 499-510.	1.5	15
114	Toxicity of Uranium to Microbial Communities in Anaerobic Biofilms. Water, Air, and Soil Pollution, 2012, 223, 3859-3868.	1.1	15
115	Nitrate Reverses Severe Nitrite Inhibition of Anaerobic Ammonium Oxidation (Anammox) Activity in Continuously-Fed Bioreactors. Environmental Science & Technology, 2016, 50, 10518-10526.	4.6	15
116	Rapid analysis of apolar low molecular weight constituents in wood using high pressure liquid chromatography with evaporative light scattering detection. Phytochemical Analysis, 2000, 11, 251-256.	1.2	14
117	Oxidation of reduced daughter products from 2,4-dinitroanisole (DNAN) by Mn(IV) and Fe(III) oxides. Chemosphere, 2018, 201, 790-798.	4.2	14
118	Molecular characterization of mesophilic and thermophilic sulfate reducing microbial communities in expanded granular sludge bed (EGSB) reactors. Biodegradation, 2008, 19, 161-177.	1.5	13
119	Toluene–nitrite inhibition synergy of anaerobic ammonium oxidizing (anammox) activity. Process Biochemistry, 2013, 48, 926-930.	1.8	13
120	Environmental Fate of ¹⁴ C Radiolabeled 2,4-Dinitroanisole in Soil Microcosms. Environmental Science & Technology, 2017, 51, 13327-13334.	4.6	13
121	Peroxidase and Aryl Metabolite Production by the White Rot Fungus <i>Bjerkandera</i> sp. Strain BOS55 During Solid State Fermentation of Lignocellulosic Substrates. Holzforschung, 1998, 52, 351-358.	0.9	12
122	Sulfonium Salts of Alicyclic Group Functionalized Semifluorinated Alkyl Ether Sulfonates As Photoacid Generators. Chemistry of Materials, 2009, 21, 4037-4046.	3.2	12
123	Uranium bioremediation in continuously fed upflow sand columns inoculated with anaerobic granules. Biotechnology and Bioengineering, 2011, 108, 2583-2591.	1.7	12
124	Effects of graphene oxide and reduced graphene oxide on acetoclastic, hydrogenotrophic and methylotrophic methanogenesis. Biodegradation, 2020, 31, 35-45.	1.5	12
125	Bacteria Make a Living Breathing the Nitroheterocyclic Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). Environmental Science & Technology, 2021, 55, 5806-5814.	4.6	12
126	Assessing protein oxidation by inorganic nanoparticles with enzymeâ€linked immunosorbent assay (ELISA). Biotechnology and Bioengineering, 2013, 110, 694-701.	1.7	11

#	Article	IF	CITATIONS
127	LC-ICP-OES method for antimony speciation analysis in liquid samples. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 457-463.	0.9	11
128	Biologically mediated mobilization of arsenic from granular ferric hydroxide in anaerobic columns fed landfill leachate. Biotechnology and Bioengineering, 2008, 101, 1205-1213.	1.7	10
129	Stability of alumina, ceria, and silica nanoparticles in municipal wastewater. Water Science and Technology, 2014, 70, 1533-1539.	1.2	10
130	Evidence of anaerobic coupling reactions between reduced intermediates of 4-nitroanisole. Chemosphere, 2018, 195, 372-380.	4.2	10
131	Iron(II) monosulfide (FeS) minerals reductively transform the insensitive munitions compounds 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO). Chemosphere, 2021, 285, 131409.	4.2	10
132	Real-time monitoring of nanoparticle retention in porous media. Environmental Chemistry Letters, 2013, 11, 71-76.	8.3	9
133	Reductive biotransformation as a pretreatment to enhance in situ chemical oxidation of nitroaromatic and nitroheterocyclic explosives. Chemosphere, 2019, 222, 1025-1032.	4.2	9
134	Brightness Improvement Of Douglas Fir Thermomechanical Pulp By Edta And Ascorbic Acid Treatments On Chips. Journal of Wood Chemistry and Technology, 1996, 16, 155-167.	0.9	8
135	Biodegradability, Cytotoxicity, and Physicochemical Treatability of Two Novel Perfluorooctane Sulfonate-Free Photoacid Generators. Archives of Environmental Contamination and Toxicology, 2013, 64, 187-197.	2.1	8
136	The intracellular proton gradient enables anaerobic ammonia oxidizing (anammox) bacteria to tolerate NO2â^' inhibition. Journal of Biotechnology, 2014, 192, 265-267.	1.9	8
137	Iron sulfide attenuates the methanogenic toxicity of elemental copper and zinc oxide nanoparticles and their soluble metal ion analogs. Science of the Total Environment, 2016, 548-549, 380-389.	3.9	8
138	Continuous treatment of the insensitive munitions compound N-methyl-p-nitro aniline (MNA) in an upflow anaerobic sludge blanket (UASB) bioreactor. Chemosphere, 2016, 144, 1116-1122.	4.2	8
139	Pretreatments to enhance the anaerobic biodegradability of <i>Chlorella protothecoides</i> algal biomass. Environmental Progress and Sustainable Energy, 2018, 37, 418-424.	1.3	8
140	Diazole and triazole inhibition of nitrification process in return activated sludge. Chemosphere, 2020, 241, 124993.	4.2	8
141	Mechanisms and Control of NO ₂ ^{â^'} Inhibition of Anaerobic Ammonium Oxidation (Anammox). Water Environment Research, 2017, 89, 330-336.	1.3	8
142	Enhanced removal of per- and polyfluoroalkyl substances by crosslinked polyaniline polymers. Chemical Engineering Journal, 2022, 446, 137246.	6.6	8
143	Bioconcentration potential and microbial toxicity of onium cations in photoacid generators. Environmental Science and Pollution Research, 2021, 28, 8915-8921.	2.7	7
144	Quinone Moieties Link the Microbial Respiration of Natural Organic Matter to the Chemical Reduction of Diverse Nitroaromatic Compounds. Environmental Science & amp; Technology, 2022, 56, 9387-9397.	4.6	7

#	Article	IF	CITATIONS
145	Effect of chemical structure on the microbial nitrification inhibition and copper corrosion inhibition properties of azole compounds. Journal of Cleaner Production, 2022, 366, 132871.	4.6	7
146	Rapid biotransformation of the insensitive munitions compound, 3-nitro-1,2,4-triazol-5-one (NTO), by wastewater sludge. World Journal of Microbiology and Biotechnology, 2020, 36, 67.	1.7	6
147	Covalent binding with model quinone compounds unveils the environmental fate of the insensitive munitions reduced product 2,4-diaminoanisole (DAAN) under anoxic conditions. Journal of Hazardous Materials, 2021, 413, 125459.	6.5	6
148	Treatment of acid rock drainage using a sulphate-reducing bioreactor with a limestone precolumn. Environmental Technology (United Kingdom), 2023, 44, 185-196.	1.2	6
149	Analysis of hydrophilic per- and polyfluorinated sulfonates including trifluoromethanesulfonate using solid phase extraction and mixed-mode liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2022, 1664, 462817.	1.8	6
150	Photochemical fate of sulfonium photoacid generator cations under photolithography relevant UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 416, 113324.	2.0	5
151	Covalent bonding of aromatic amine daughter products of 2,4-dinitroanisole (DNAN) with model quinone compounds representing humus via nucleophilic addition. Environmental Pollution, 2021, 268, 115862.	3.7	5
152	Adaptation of a Methanogenic Consortium to Arsenite Inhibition. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	4
153	Transport and abatement of fluorescent silica nanoparticle (SiO2 NP) in granular filtration: effect of porous media and ionic strength. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	4
154	Coupling reactions between reduced intermediates of insensitive munitions compound analog 4-nitroanisole. Chemosphere, 2019, 222, 789-796.	4.2	4
155	Toxicity of azoles towards the anaerobic ammonium oxidation (anammox) process. Journal of Chemical Technology and Biotechnology, 2020, 95, 1057-1063.	1.6	4
156	Adaptation of granular sludge microbial communities to nitrate, sulfide, and/or p-cresol removal. International Microbiology, 2019, 22, 305-316.	1.1	4
157	Toxicity of abrasive nanoparticles (SiO2, CeO2, and Al2O3) on Aliivibrio fischeri and human bronchial epithelial cells (16HBE140-). Journal of Nanoparticle Research, 2021, 23, 1.	0.8	4
158	Reductive transformation of the insensitive munitions compound nitroguanidine by different iron-based reactive minerals. Environmental Pollution, 2022, 309, 119788.	3.7	4
159	Synthesis of ¹³ C and ¹⁵ N labeled 2,4â€dinitroanisole. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 434-436.	0.5	3
160	Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. Journal of Chemical Technology and Biotechnology, 2018, 93, 1611-1617.	1.6	3
161	Stability and microbial toxicity of HfO ₂ and ZrO ₂ nanoparticles for photolithography. Green Materials, 2019, 7, 109-117.	1.1	3
162	Cytotoxicity Assessment of Gallium- and Indium-Based Nanoparticles Toward Human Bronchial Epithelial Cells Using an Impedance-Based Real-Time Cell Analyzer. International Journal of Toxicology, 2020, 39, 218-231.	0.6	3

#	Article	IF	CITATIONS
163	Synthesis and Characterization of Customizable Polyaniline-Derived Polymers and Their Application for Perfluorooctanoic Acid Removal from Aqueous Solution. ACS ES&T Water, 2021, 1, 1438-1446.	2.3	3
164	Aerobic biodegradation of emerging azole contaminants by return activated sludge and enrichment cultures. Journal of Hazardous Materials, 2021, 417, 126151.	6.5	3
165	Identifying Toxic Biotransformation Products of the Insensitive Munitions Compound, 2,4-Dinitroanisole (DNAN), Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF-MS). ACS Symposium Series, 2016, , 133-145.	0.5	2
166	In silico design of calixarene-based arsenic acid removal agents. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 85, 169-174.	0.9	2
167	Lithography performance and environmental compatibility of PFOS-free photoacid generators. Green Materials, 2017, 5, 173-181.	1.1	2
168	Anammox enrichment culture has unexpected capabilities to biotransform azole contaminants of emerging concern. Chemosphere, 2021, 264, 128550.	4.2	2
169	The Role of Manganese Dioxide in the Natural Formation of Organochlorines. ACS ES&T Water, 2021, 1, 2523-2530.	2.3	2
170	Tailored Polyanilines Are High-Affinity Adsorbents for Per- and Polyfluoroalkyl Substances. ACS ES&T Water, 2022, 2, 1402-1410.	2.3	2
171	Environmentally friendly natural materials-based photoacid generators for next-generation photolithography. , 2011, , .		1
172	Response to the comments on "Cadmium telluride leaching behavior: Discussion of Zeng etÂal. (2015)― Journal of Environmental Management, 2015, 164, 65-66.	3.8	1
173	Platinum(II) reduction to platinum nanoparticles in anaerobic sludge. Journal of Chemical Technology and Biotechnology, 2019, 94, 468-474.	1.6	1
174	Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System. International Journal of Environmental Research and Public Health, 2022, 19, 1484.	1.2	1
175	Fate of bis-(4-tert-butyl phenyl)-iodonium under photolithography relevant irradiation and the environmental risk properties of the formed photoproducts. Environmental Science and Pollution Research, 2022, 29, 25988-25994.	2.7	0