Christina Walters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6719362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The unique role of seed banking and cryobiotechnologies in plant conservation. Plants People Planet, 2021, 3, 83-91.	1.6	46
2	Cryobiotechnologies: Tools for expanding long-term ex situ conservation to all plant species. Biological Conservation, 2020, 250, 108736.	1.9	62
3	Stress–response relationships related to ageing and death of orthodox seeds: a study comparing viability and RNA integrity in soya bean (<i>Glycine max</i>) cv. Williams 82. Seed Science Research, 2020, 30, 161-172.	0.8	5
4	Dry architecture: towards the understanding of the variation of longevity in desiccation-tolerant germplasm. Seed Science Research, 2020, 30, 142-155.	0.8	64
5	Viability and vigour loss during storage of <i>Rudbeckia mollis</i> seeds having different mass: an intra-specific perspective. Seed Science Research, 2020, 30, 122-132.	0.8	1
6	Selenium Accumulation, Speciation and Localization in Brazil Nuts (Bertholletia excelsa H.B.K.). Plants, 2019, 8, 289.	1.6	34
7	Solid-State Biology and Seed Longevity: A Mechanical Analysis of Glasses in Pea and Soybean Embryonic Axes. Frontiers in Plant Science, 2019, 10, 920.	1.7	26
8	The kinetics of ageing in dry-stored seeds: a comparison of viability loss and RNA degradation in unique legacy seed collections. Annals of Botany, 2019, 123, 1133-1146.	1.4	40
9	Longevity of Preserved Germplasm: The Temperature Dependency of Aging Reactions in Glassy Matrices of Dried Fern Spores. Plant and Cell Physiology, 2019, 60, 376-392.	1.5	26
10	Improving success of rare plant seed reintroductions: a case study of <i>Dalea carthagenensis</i> var. <i>floridana</i> , a rare legume with dormant seeds. Restoration Ecology, 2018, 26, 636-641.	1.4	1
11	Assessing the limits of liquid nitrogen storage: fern spores as unicellular model to understant and improve longevity at cryogenic conditions Cryobiology, 2018, 85, 160.	0.3	3
12	Genebank Conservation of Germplasm Collected from Wild Species. , 2018, , 245-280.		5
13	Sampling Wild Species to Conserve Genetic Diversity. , 2018, , 209-228.		8
14	Exploring the fate of mRNA in aging seeds: protection, destruction, or slow decay?. Journal of Experimental Botany, 2018, 69, 4309-4321.	2.4	43
15	Variation of desiccation tolerance and longevity in fern spores. Journal of Plant Physiology, 2017, 211, 53-62.	1.6	25
16	Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. Journal of Experimental Botany, 2017, 68, 2219-2230.	2.4	57
17	Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration. Journal of Experimental Botany, 2016, 67, 1783-1793.	2.4	40
18	Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta, 2015, 242, 397-406.	1.6	157

CHRISTINA WALTERS

#	Article	IF	CITATIONS
19	Genebanking Seeds from Natural Populations. Natural Areas Journal, 2015, 35, 98-105.	0.2	19
20	Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of <i>Acer saccharinum</i> . Annals of Botany, 2015, 115, 991-1000.	1.4	43
21	Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Annals of Botany, 2014, 114, 1747-1759.	1.4	39
22	Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures. Annals of Botany, 2014, 113, 695-709.	1.4	48
23	Preservation of Recalcitrant Seeds. Science, 2013, 339, 915-916.	6.0	143
24	Effects of temperature and desiccation on ex situ conservation of nongreen fern spores. American Journal of Botany, 2012, 99, 721-729.	0.8	32
25	An analysis of embryo development in palm: interactions between dry matter accumulation and water relations in <i>Pritchardia remota</i> (Arecaceae). Seed Science Research, 2012, 22, 97-111.	0.8	22
26	Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. Plant Journal, 2011, 68, 607-619.	2.8	92
27	Exploration of Cryo-methods to Preserve Tree and Herbaceous Fern Gametophytes. , 2011, , 173-192.		13
28	Modeling Demographics and Genetic Diversity in Ex Situ Collections during Seed Storage and Regeneration. Crop Science, 2010, 50, 2440-2447.	0.8	28
29	Phylogeny and biogeography of the eastern Asian–North American disjunct wild-rice genus (Zizania L.,) Tj ETQ	q1 1 0.78 1.2	4314 rgBT /O
30	Characterization of volatile production during storage of lettuce (Lactuca sativa) seed. Journal of Experimental Botany, 2010, 61, 3915-3924.	2.4	47
31	Structural mechanics of seed deterioration: Standing the test of time. Plant Science, 2010, 179, 565-573.	1.7	140
32	Assessment of variation in seed longevity within rye, wheat and the intergeneric hybrid triticale. Seed Science Research, 2009, 19, 213-224.	0.8	34
33	Cryopreservation of Recalcitrant (i.e. Desiccation-Sensitive) Seeds. , 2008, , 465-484.		26
34	Genebanks in the post-genomic age: Emerging roles and anticipated uses. Biodiversity, 2008, 9, 68-71.	0.5	22
35	Water properties in fern spores: sorption characteristics relating to water affinity, glassy states, and storage stability. Journal of Experimental Botany, 2007, 58, 1185-1196.	2.4	35
36	Hydration of Cuphea seeds containing crystallised triacylglycerols. Functional Plant Biology, 2007, 34, 360.	1.1	2

#	Article	IF	CITATIONS
37	Calorimetric properties of water and triacylglycerols in fern spores relating to storage at cryogenic temperatures. Cryobiology, 2007, 55, 1-9.	0.3	33
38	Materials used for seed storage containers: response to Gómez-Campo [<i>Seed Science Research</i> 16 , 291–294 (2006)]. Seed Science Research, 2007, 17, 233-242.	0.8	11
39	Capturing genetic diversity of wild populations for ex situ conservation: Texas wild rice (Zizania) Tj ETQq1 1 0.78	4314 rgB1 0.8	「/Qyerlock 1(
40	The utility of aged seeds in DNA banks. Seed Science Research, 2006, 16, 169-178.	0.8	31
41	Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology, 2006, 52, 48-61.	0.3	130
42	Coffee seed physiology. Brazilian Journal of Plant Physiology, 2006, 18, 149-163.	0.5	84
43	Triacylglycerol phase and â€~intermediate' seed storage physiology: a study of Cuphea carthagenensis. Planta, 2006, 223, 1081-1089.	1.6	55
44	Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. Planta, 2006, 224, 1415-1426.	1.6	38
45	Organization of lipid reserves in cotyledons of primed and aged sunflower seeds. Planta, 2005, 222, 397-407.	1.6	35
46	Dying while Dry: Kinetics and Mechanisms of Deterioration in Desiccated Organisms. Integrative and Comparative Biology, 2005, 45, 751-758.	0.9	168
47	Longevity of seeds stored in a genebank: species characteristics. Seed Science Research, 2005, 15, 1-20.	0.8	410
48	Microsatellite primers for Texas wild rice (Zizania texana), and a preliminary test of the impact of cryogenic storage on allele frequency at these loci. Conservation Genetics, 2004, 5, 853-859.	0.8	19
49	Longevity of cryogenically stored seeds. Cryobiology, 2004, 48, 229-244.	0.3	204
50	Temperature Dependency of Molecular Mobility in Preserved Seeds. Biophysical Journal, 2004, 86, 1253-1258.	0.2	61
51	Non-equilibrium cooling of Poncirus trifoliata (L.) embryonic axes at various water contents. Cryo-Letters, 2004, 25, 121-8.	0.1	7
52	The influence of water content, cooling and warming rate upon survival of embryonic axes of Poncirus trifoliata (L.). Cryo-Letters, 2004, 25, 129-38.	0.1	16
53	Triacylglycerols determine the unusual storage physiology of Cuphea seed. Planta, 2003, 217, 699-708.	1.6	73
54	Conformation of a Group 2 Late Embryogenesis Abundant Protein from Soybean. Evidence of Poly (I-Proline)-type II Structure. Plant Physiology, 2003, 131, 963-975.	2.3	112

CHRISTINA WALTERS

#	Article	IF	CITATIONS
55	Temperature-Induced Extended Helix/Random Coil Transitions in a Group 1 Late Embryogenesis-Abundant Protein from Soybean. Plant Physiology, 2002, 128, 822-832.	2.3	111
56	A cryopreservation protocol for embryos of the endangered species Zizania texana. Cryo-Letters, 2002, 23, 291-8.	0.1	8
57	Interactions among Water Content, Rapid (Nonequilibrium) Cooling to â^'196°C, and Survival of Embryonic Axes of Aesculus hippocastanum L. Seeds. Cryobiology, 2001, 42, 196-206.	0.3	46
58	Water sorption properties inCoffeaspp. seeds and embryos. Seed Science Research, 1999, 9, 321-330.	0.8	16
59	Refrigeration can save seeds economically. Nature, 1998, 395, 758-758.	13.7	4
60	Storage behavior of Typha latifolia pollen at low water contents: Interpretation on the basis of water activity and glass concepts. Physiologia Plantarum, 1998, 103, 145-153.	2.6	60
61	Ultrastructural and biophysical changes in developing embryos of Aesculus hippocastanum in relation to the acquisition of tolerance to drying. Physiologia Plantarum, 1998, 104, 513-524.	2.6	44
62	Understanding the mechanisms and kinetics of seed aging. Seed Science Research, 1998, 8, 223-244.	0.8	330
63	Heat-soluble proteins extracted from wheat embryos have tightly bound sugars and unusual hydration properties. Seed Science Research, 1997, 7, 125-134.	0.8	43
64	Subcellular organization and metabolic activity during the development of seeds that attain different levels of desiccation tolerance. Seed Science Research, 1997, 7, 135-144.	0.8	77