Hong-Ji Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6719149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous polyamide 6/carbon black composite as an effective electromagnetic interference shield. Polymer International, 2022, 71, 247-254.	1.6	10
2	Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Materials Horizons, 2022, 9, 708-719.	6.4	76
3	Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption. Journal of Colloid and Interface Science, 2022, 610, 1077-1087.	5.0	38
4	Dual synergistic effect of a carbon/metal hybrid network on the mechanical and electromagnetic interference shielding performance in self-assembly enhanced epoxy curing networks. Journal of Materials Chemistry C, 2021, 9, 9282-9291.	2.7	9
5	Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Composites Part B: Engineering, 2021, 212, 108690.	5.9	61
6	Multifunctional and corrosion resistant poly(phenylene sulfide)/Ag composites for electromagnetic interference shielding. Chemical Engineering Journal, 2021, 415, 129052.	6.6	68
7	Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105692.	3.8	177
8	Flexible and robust silver coated non-woven fabric reinforced waterborne polyurethane films for ultra-efficient electromagnetic shielding. Composites Part B: Engineering, 2020, 184, 107745.	5.9	70
9	Deposited structure design of epoxy composites with excellent electromagnetic interference shielding performance and balanced mechanical properties. Journal of Materials Chemistry C, 2020, 8, 16930-16939.	2.7	11
10	Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption. Carbon, 2020, 167, 530-540.	5.4	80
11	Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chemical Engineering Journal, 2020, 393, 124644.	6.6	87
12	Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. Journal of Materials Chemistry A, 2020, 8, 9146-9159.	5.2	196
13	Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection. Journal of Materials Science: Materials in Electronics, 2019, 30, 14669-14678.	1.1	14
14	Highly Bendable and Durable Waterproof Paper for Ultra-High Electromagnetic Interference Shielding. Polymers, 2019, 11, 1486.	2.0	30
15	Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications. Journal of Materials Chemistry C, 2019, 7, 9018-9024.	2.7	79
16	Effect of carbon nanofiller dimension on synergistic EMI shielding network of epoxy/metal conductive foams. Composites Part A: Applied Science and Manufacturing, 2019, 118, 41-48.	3.8	83
17	Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit. Chemical Engineering Journal, 2019, 360, 1427-1436.	6.6	91
18	Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. Applied Surface Science, 2019, 469, 1-9.	3.1	78

Hong-Ji Duan

#	Article	IF	CITATIONS
19	Electromagnetic interference shielding polymer composites with magnetic and conductive FeCo/reduced graphene oxide 3D networks. Journal of Materials Science: Materials in Electronics, 2019, 30, 2045-2056.	1.1	10
20	Flexible and conductive PP/EPDM/Ni coated glass fiber composite for efficient electromagnetic interference shielding. Journal of Materials Science: Materials in Electronics, 2018, 29, 10329-10336.	1.1	22
21	Facile preparation of polyamide 6/exfoliated graphite nanoplate composites via ultrasoundâ€assisted processing. Polymer Engineering and Science, 2018, 58, 1739-1745.	1.5	17
22	Facile and economical fabrication of conductive polyamide 6 composites with segregated expanded graphite networks for efficient electromagnetic interference shielding. Journal of Materials Science: Materials in Electronics, 2018, 29, 1058-1064.	1.1	18
23	Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic. ACS Applied Materials & Interfaces, 2018, 10, 19143-19152.	4.0	212
24	Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic interference shielding. Applied Surface Science, 2018, 455, 856-863.	3.1	66
25	TiO2 hybrid polypropylene/nickel coated glass fiber conductive composites for highly efficient electromagnetic interference shielding. Journal of Materials Science: Materials in Electronics, 2017, 28, 5725-5732.	1.1	15
26	Light-weight epoxy/nickel coated carbon fibers conductive foams for electromagnetic interference shielding. Journal of Materials Science: Materials in Electronics, 2017, 28, 5925-5930.	1.1	35
27	Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding. Materials Letters, 2017, 209, 353-356.	1.3	38
28	Anisotropically conductive polypropylene/nickel coated glass fiber composite via magnetic field inducement. Journal of Materials Science: Materials in Electronics, 2017, 28, 9126-9131.	1.1	13
29	Crystallization induced enhancement on electrical conductivity and strength of highly conductive PP composites. Journal of Polymer Research, 2016, 23, 1.	1.2	6
30	Realization of reinforcing and toughening poly (phenylene sulfide) with rigid silica nanoparticles. Journal of Polymer Research, 2016, 23, 1.	1.2	10
31	A facile strategy to fabricate microencapsulated expandable graphite as a flameâ€retardant for rigid polyurethane foams. Journal of Applied Polymer Science, 2015, 132, .	1.3	20
32	Preparation of the polypropylene/nickel coated glass fibers conductive composites with a low percolation threshold. Materials Letters, 2015, 143, 124-127.	1.3	21
33	Preparation and characterization of poly (phenylene sulfide) nanocomposites with both silica and clay fillers. High Performance Polymers, 2015, 27, 782-789.	0.8	1
34	Core-shell structure design of pulverized expandable graphite particles and their application in flame-retardant rigid polyurethane foams. Polymer International, 2014, 63, 72-83.	1.6	37
35	Effect of the contribution of crystalline and amorphous phase on tensile behavior of poly (phenylene) Tj ETQq1	1 0.78431 1.2	4 rggBT /Oved
36	Morphology control of nanofillers in poly (phenylene sulfide): A novel method to realize the exfoliation of nanoclay by SiO2 via melt shear flow. Composites Science and Technology, 2013, 75, 28-34.	3.8	45

#	Article	IF	CITATIONS
37	Synergistic effect of ammonium polyphosphate and expandable graphite on flameâ€retardant properties of acrylonitrileâ€butadieneâ€styrene. Journal of Applied Polymer Science, 2012, 126, 1337-1343.	1.3	67