Reuben S Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6718855/publications.pdf

Version: 2024-02-01

205 papers

18,928 citations

67 h-index 128 g-index

226 all docs 226 docs citations

226 times ranked 11070 citing authors

#	Article	IF	Citations
1	Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature, 2022, 602, 510-517.	27.8	60
2	Induction of APOBEC3-mediated genomic damage in urothelium implicates BK polyomavirus (BKPyV) as a hit-and-run driver for bladder cancer. Oncogene, 2022, 41, 2139-2151.	5.9	21
3	Abstract PD1-06: Apobec mutagenesis is a pervasive feature of poor prognosis breast cancer associating with <i>ESR1</i> wild type, endocrine resistant disease. Cancer Research, 2022, 82, PD1-06-PD1-06.	0.9	1
4	The current toolbox for APOBEC drug discovery. Trends in Pharmacological Sciences, 2022, 43, 362-377.	8.7	12
5	Gain-of-Signal Assays for Probing Inhibition of SARS-CoV-2 M ^{pro} /3CL ^{pro} in Living Cells. MBio, 2022, 13, e0078422.	4.1	19
6	A VSV-based assay quantifies coronavirus Mpro/3CLpro/Nsp5 main protease activity and chemical inhibition. Communications Biology, 2022, 5, 391.	4.4	9
7	Cryo-EM structure of the EBV ribonucleotide reductase BORF2 and mechanism of APOBEC3B inhibition. Science Advances, 2022, 8, eabm2827.	10.3	15
8	Endogenous APOBEC3B overexpression characterizes HPV-positive and HPV-negative oral epithelial dysplasias and head and neck cancers. Modern Pathology, 2021, 34, 280-290.	5.5	22
9	R-Spondins 2 and 3 Are Overexpressed in a Subset of Human Colon and Breast Cancers. DNA and Cell Biology, 2021, 40, 70-79.	1.9	9
10	Small-Angle X-ray Scattering Models of APOBEC3B Catalytic Domain in a Complex with a Single-Stranded DNA Inhibitor. Viruses, 2021, 13, 290.	3.3	6
11	APOBECs and Herpesviruses. Viruses, 2021, 13, 390.	3.3	44
12	Structural basis for recognition of distinct deaminated DNA lesions by endonuclease Q. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
13	Structural Characterization of a Minimal Antibody against Human APOBEC3B. Viruses, 2021, 13, 663.	3.3	2
14	Demystifying Cell Cycle Arrest by HIV-1 Vif. Trends in Microbiology, 2021, 29, 381-384.	7.7	5
15	Small Molecule Inhibitors of Activation-Induced Deaminase Decrease Class Switch Recombination in B Cells. ACS Pharmacology and Translational Science, 2021, 4, 1214-1226.	4.9	5
16	Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution. Cancer Discovery, 2021, 11, 2456-2473.	9.4	74
17	APOBEC3A drives deaminase domain-independent chromosomal instability to promote pancreatic cancer metastasis. Nature Cancer, 2021, 2, 1338-1356.	13.2	35
18	Structural basis of host protein hijacking in human T-cell leukemia virus integration. Nature Communications, 2020, 11, 3121.	12.8	29

#	Article	IF	CITATIONS
19	APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. Journal of Experimental Medicine, 2020, 217, .	8.5	87
20	Functional and Structural Insights into a Vif/PPP2R5 Complex Elucidated Using Patient HIV-1 Isolates and Computational Modeling. Journal of Virology, 2020, 94, .	3.4	6
21	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. PLoS Pathogens, 2020, 16, e1008812.	4.7	16
22	APOBEC3B-mediated corruption of the tumor cell immunopeptidome induces heteroclitic neoepitopes for cancer immunotherapy. Nature Communications, 2020, 11, 790.	12.8	47
23	Active site plasticity and possible modes of chemical inhibition of the human DNA deaminase APOBEC3B. FASEB BioAdvances, 2020, 2, 49-58.	2.4	9
24	The DNA Cytosine Deaminase APOBEC3B is a Molecular Determinant of Platinum Responsiveness in Clear Cell Ovarian Cancer. Clinical Cancer Research, 2020, 26, 3397-3407.	7.0	45
25	Dual Functionality of HIV-1 Vif in APOBEC3 Counteraction and Cell Cycle Arrest. Frontiers in Microbiology, 2020, 11, 622012.	3.5	16
26	MagnEditâ€"interacting factors that recruit DNA-editing enzymes to single base targets. Life Science Alliance, 2020, 3, e201900606.	2.8	7
27	Characterization of the mechanism by which the RB/E2F pathway controls expression of the cancer genomic DNA deaminase APOBEC3B. ELife, 2020, 9, .	6.0	25
28	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		0
29	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		0
30	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		0
31	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		0
32	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		0
33	Determinants of Oligonucleotide Selectivity of APOBEC3B. Journal of Chemical Information and Modeling, 2019, 59, 2264-2273.	5.4	10
34	The Role of RNA in HIV-1 Vif-Mediated Degradation of APOBEC3H. Journal of Molecular Biology, 2019, 431, 5019-5031.	4.2	5
35	HIV-1 Vif Triggers Cell Cycle Arrest by Degrading Cellular PPP2R5 Phospho-regulators. Cell Reports, 2019, 29, 1057-1065.e4.	6.4	28
36	The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22158-22163.	7.1	34

#	Article	IF	CITATIONS
37	A Rabbit Monoclonal Antibody against the Antiviral and Cancer Genomic DNA Mutating Enzyme APOBEC3B. Antibodies, 2019, 8, 47.	2.5	30
38	A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes. Scientific Reports, 2019, 9, 497.	3.3	38
39	The DNA deaminase APOBEC3B interacts with the cell-cycle protein CDK4 and disrupts CDK4-mediated nuclear import of Cyclin D1. Journal of Biological Chemistry, 2019, 294, 12099-12111.	3.4	21
40	Suboptimal T-cell Therapy Drives a Tumor Cell Mutator Phenotype That Promotes Escape from First-Line Treatment. Cancer Immunology Research, 2019, 7, 828-840.	3.4	13
41	Polyomavirus T Antigen Induces < i > APOBEC 3B < / i > Expression Using an LXCXE-Dependent and TP53-Independent Mechanism. MBio, 2019, 10, .	4.1	35
42	Evolved Proteins Inhibit Entry of Enfuvirtide-Resistant HIV-1. ACS Infectious Diseases, 2019, 5, 634-640.	3.8	5
43	A Conserved Mechanism of APOBEC3 Relocalization by Herpesviral Ribonucleotide Reductase Large Subunits. Journal of Virology, 2019, 93, .	3.4	31
44	Lobular Carcinomas <i>In Situ</i> Display Intralesion Genetic Heterogeneity and Clonal Evolution in the Progression to Invasive Lobular Carcinoma. Clinical Cancer Research, 2019, 25, 674-686.	7.0	44
45	A lentivirus-based system for Cas9/gRNA expression and subsequent removal by Cre-mediated recombination. Methods, 2019, 156, 79-84.	3.8	17
46	Epstein–Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity. Nature Microbiology, 2019, 4, 78-88.	13.3	95
47	Inhibiting APOBEC3 Activity with Single-Stranded DNA Containing 2′-Deoxyzebularine Analogues. Biochemistry, 2019, 58, 391-400.	2.5	29
48	HIV-1 restriction by endogenous APOBEC3G in the myeloid cell line THP-1. Journal of General Virology, 2019, 100, 1140-1152.	2.9	19
49	Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity. Molecular Biology and Evolution, 2018, 35, 1626-1637.	8.9	59
50	Simian Immunodeficiency Virus Vif and Human APOBEC3B Interactions Resemble Those between HIV-1 Vif and Human APOBEC3G. Journal of Virology, 2018, 92, .	3.4	10
51	The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by an RNA-Mediated Dimerization Mechanism. Molecular Cell, 2018, 69, 75-86.e9.	9.7	65
52	Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Annals of Oncology, 2018, 29, 563-572.	1.2	135
53	APOBEC Enzymes as Targets for Virus and Cancer Therapy. Cell Chemical Biology, 2018, 25, 36-49.	5.2	137
54	Evaluation of sequence variability in HIV-1 gp41 C-peptide helix-grafted proteins. Bioorganic and Medicinal Chemistry, 2018, 26, 1220-1224.	3.0	3

#	Article	IF	Citations
55	Natural APOBEC3C variants can elicit differential HIV-1 restriction activity. Retrovirology, 2018, 15, 78.	2.0	25
56	APOBEC3 Mediates Resistance to Oncolytic Viral Therapy. Molecular Therapy - Oncolytics, 2018, 11, 1-13.	4.4	14
57	Genetic and mechanistic basis for APOBEC3H alternative splicing, retrovirus restriction, and counteraction by HIV-1 protease. Nature Communications, 2018, 9, 4137.	12.8	28
58	APOBEC3H Subcellular Localization Determinants Define Zipcode for Targeting HIV-1 for Restriction. Molecular and Cellular Biology, 2018, 38, .	2.3	16
59	APOBEC3B Nuclear Localization Requires Two Distinct N-Terminal Domain Surfaces. Journal of Molecular Biology, 2018, 430, 2695-2708.	4.2	42
60	Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Communications Biology, 2018, 1, 54.	4.4	175
61	Mutation Signatures Including APOBEC in Cancer Cell Lines. JNCI Cancer Spectrum, 2018, 2, .	2.9	45
62	HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G. PLoS Pathogens, 2018, 14, e1007010.	4.7	35
63	Characterization of BK Polyomaviruses from Kidney Transplant Recipients Suggests a Role for APOBEC3 in Driving In-Host Virus Evolution. Cell Host and Microbe, 2018, 23, 628-635.e7.	11.0	63
64	A fluorescent reporter for quantification and enrichment of DNA editing by APOBEC–Cas9 or cleavage by Cas9 in living cells. Nucleic Acids Research, 2018, 46, e84-e84.	14.5	56
65	The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch. Antioxidants and Redox Signaling, 2017, 27, 1317-1331.	5.4	37
66	Opossum APOBEC1 is a DNA mutator with retrovirus and retroelement restriction activity. Scientific Reports, 2017, 7, 46719.	3.3	12
67	Elevated APOBEC3B expression drives a kataegic-like mutation signature and replication stress-related therapeutic vulnerabilities in p53-defective cells. British Journal of Cancer, 2017, 117, 113-123.	6.4	84
68	Reassessing APOBEC3G Inhibition by HIV-1 Vif-Derived Peptides. Journal of Molecular Biology, 2017, 429, 88-96.	4.2	7
69	Nanoscale Characterization of Interaction of APOBEC3G with RNA. Biochemistry, 2017, 56, 1473-1481.	2.5	13
70	Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma. MBio, 2017, 8, .	4.1	100
71	Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nature Structural and Molecular Biology, 2017, 24, 131-139.	8.2	214
72	Computational Model and Dynamics of Monomeric Full-Length APOBEC3G. ACS Central Science, 2017, 3, 1180-1188.	11.3	32

#	Article	IF	CITATIONS
73	APOBEC3B lysine residues are dispensable for DNA cytosine deamination, HIV-1 restriction, and nuclear localization. Virology, 2017, 511, 74-81.	2.4	3
74	Conformational Switch Regulates the DNA Cytosine Deaminase Activity of Human APOBEC3B. Scientific Reports, 2017, 7, 17415.	3.3	28
75	HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation. PLoS Pathogens, 2017, 13, e1006348.	4.7	41
76	Functional Upregulation of the DNA Cytosine Deaminase APOBEC3B by Polyomaviruses. Journal of Virology, 2016, 90, 6379-6386.	3.4	80
77	1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure. Journal of Molecular Biology, 2016, 428, 2307-2316.	4.2	32
78	Helixâ€Grafted Pleckstrin Homology Domains Suppress HIVâ€1 Infection of CD4â€Positive Cells. ChemBioChem, 2016, 17, 1945-1950.	2.6	3
79	DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer. Genome Biology, 2016, 17, 185.	8.8	140
80	The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nature Communications, 2016, 7, 12918.	12.8	146
81	The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Science Advances, 2016, 2, e1601737.	10.3	175
82	Single-Molecule Force Spectroscopy Studies of APOBEC3A–Single-Stranded DNA Complexes. Biochemistry, 2016, 55, 3102-3106.	2.5	8
83	APOBEC3G Expression Correlates with T-Cell Infiltration and Improved Clinical Outcomes in High-grade Serous Ovarian Carcinoma. Clinical Cancer Research, 2016, 22, 4746-4755.	7.0	59
84	A Naturally Occurring Domestic Cat APOBEC3 Variant Confers Resistance to Feline Immunodeficiency Virus Infection. Journal of Virology, 2016, 90, 474-485.	3.4	16
85	Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B. PLoS ONE, 2016, 11, e0155391.	2.5	33
86	Evolutionary Paradigms from Ancient and Ongoing Conflicts between the Lentiviral Vif Protein and Mammalian APOBEC3 Enzymes. PLoS Pathogens, 2016, 12, e1005958.	4.7	22
87	APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies. Scientific Reports, 2015, 5, 15648.	3.3	18
88	The Binding Interface between Human APOBEC3F and HIV-1 Vif Elucidated by Genetic and Computational Approaches. Cell Reports, 2015, 13, 1781-1788.	6.4	34
89	Structure of the Vif-binding domain of the antiviral enzyme APOBEC3G. Nature Structural and Molecular Biology, 2015, 22, 485-491.	8.2	84
90	APOBEC Enzymes: Mutagenic Fuel for Cancer Evolution and Heterogeneity. Cancer Discovery, 2015, 5, 704-712.	9.4	392

#	Article	IF	Citations
91	The Multidimensional Nature of Antiviral Innate Immunity. Cell Host and Microbe, 2015, 17, 423-425.	11.0	19
92	Molecular mechanism and clinical impact of APOBEC3B-catalyzed mutagenesis in breast cancer. Breast Cancer Research, 2015, 17, 8.	5.0	82
93	APOBECs and virus restriction. Virology, 2015, 479-480, 131-145.	2.4	439
94	Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain. Journal of Biological Chemistry, 2015, 290, 28120-28130.	3.4	89
95	The PKC/NF-κB Signaling Pathway Induces APOBEC3B Expression in Multiple Human Cancers. Cancer Research, 2015, 75, 4538-4547.	0.9	116
96	Lineage-Specific Viral Hijacking of Non-canonical E3ÂUbiquitin Ligase Cofactors in the Evolution of Vif Anti-APOBEC3 Activity. Cell Reports, 2015, 11, 1236-1250.	6.4	42
97	Oxidative Reactivities of 2-Furylquinolines: Ubiquitous Scaffolds in Common High-Throughput Screening Libraries. Journal of Medicinal Chemistry, 2015, 58, 7419-7430.	6.4	22
98	Transcriptional regulation of APOBEC3 antiviral immunity through the CBF- \hat{l}^2 /RUNX axis. Science Advances, 2015, 1, e1500296.	10.3	42
99	Vif determines the requirement for CBF- \hat{l}^2 in APOBEC3 degradation. Journal of General Virology, 2015, 96, 887-892.	2.9	16
100	Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif. Oncotarget, 2015, 6, 39969-39979.	1.8	17
101	APOBEC3B: Pathological consequences of an innate immune DNA mutator. Biomedical Journal, 2015, 38, 102.	3.1	54
102	Interaction of APOBEC3A with DNA Assessed by Atomic Force Microscopy. PLoS ONE, 2014, 9, e99354.	2.5	21
103	Natural Polymorphisms in Human APOBEC3H and HIV-1 Vif Combine in Primary T Lymphocytes to Affect Viral G-to-A Mutation Levels and Infectivity. PLoS Genetics, 2014, 10, e1004761.	3.5	92
104	Human Papillomavirus E6 Triggers Upregulation of the Antiviral and Cancer Genomic DNA Deaminase APOBEC3B. MBio, 2014, 5, .	4.1	172
105	Catalytic activity of APOBEC3F is required for efficient restriction of Vif-deficient human immunodeficiency virus. Virology, 2014, 450-451, 49-54.	2.4	22
106	Defining HIV-1 Vif residues that interact with CBF \hat{l}^2 by site-directed mutagenesis. Virology, 2014, 449, 82-87.	2.4	19
107	Cellular Requirements for Bovine Immunodeficiency Virus Vif-Mediated Inactivation of Bovine APOBEC3 Proteins. Journal of Virology, 2014, 88, 12528-12540.	3.4	31
108	APOBEC3F Determinants of HIV-1 Vif Sensitivity. Journal of Virology, 2014, 88, 12923-12927.	3.4	13

#	Article	IF	Citations
109	Elevated APOBEC3B Correlates with Poor Outcomes for Estrogen-Receptor-Positive Breast Cancers. Hormones and Cancer, 2014, 5, 405-413.	4.9	140
110	Small molecules that inhibit Vif-induced degradation of APOBEC3G. Virology Journal, 2014, 11, 122.	3.4	44
111	APOBEC3 Multimerization Correlates with HIV-1 Packaging and Restriction Activity in Living Cells. Journal of Molecular Biology, 2014, 426, 1296-1307.	4.2	68
112	Evidence for APOBEC3B mutagenesis in multiple human cancers. Nature Genetics, 2013, 45, 977-983.	21.4	660
113	APOBEC3 inhibits DEAD-END function to regulate microRNA activity. BMC Molecular Biology, 2013, 14, 16.	3.0	12
114	Cancer mutation signatures, DNA damage mechanisms, and potential clinical implications. Genome Medicine, 2013, 5, 87.	8.2	44
115	Smallâ€Molecule APOBEC3G DNA Cytosine Deaminase Inhibitors Based on a 4â€Aminoâ€1,2,4â€ŧriazoleâ€3â€ŧhi Scaffold. ChemMedChem, 2013, 8, 112-117.	ol 3.2	33
116	Crystal Structure of the DNA Cytosine Deaminase APOBEC3F: The Catalytically Active and HIV-1 Vif-Binding Domain. Structure, 2013, 21, 1042-1050.	3.3	85
117	Dispersed Sites of HIV Vif-Dependent Polyubiquitination in the DNA Deaminase APOBEC3F. Journal of Molecular Biology, 2013, 425, 1172-1182.	4.2	22
118	D316 is critical for the enzymatic activity and HIV-1 restriction potential of human and rhesus APOBEC3B. Virology, 2013, 441, 31-39.	2.4	7
119	Atomic force microscopy studies of APOBEC3G oligomerization and dynamics. Journal of Structural Biology, 2013, 184, 217-225.	2.8	38
120	The Local Dinucleotide Preference of APOBEC3G Can Be Altered from 5′-CC to 5′-TC by a Single Amino Acid Substitution. Journal of Molecular Biology, 2013, 425, 4442-4454.	4.2	80
121	Subcellular localization of the APOBEC3 proteins during mitosis and implications for genomic DNA deamination. Cell Cycle, 2013, 12, 762-772.	2.6	127
122	APOBEC3B is an enzymatic source of mutation in breast cancer. Nature, 2013, 494, 366-370.	27.8	758
123	The APOBEC3 Family of Retroelement Restriction Factors. Current Topics in Microbiology and Immunology, 2013, 371, 1-27.	1.1	177
124	APOBEC3B Upregulation and Genomic Mutation Patterns in Serous Ovarian Carcinoma. Cancer Research, 2013, 73, 7222-7231.	0.9	153
125	Impact of H216 on the DNA Binding and Catalytic Activities of the HIV Restriction Factor APOBEC3G. Journal of Virology, 2013, 87, 7008-7014.	3.4	49
126	Endogenous APOBEC3A DNA Cytosine Deaminase Is Cytoplasmic and Nongenotoxic. Journal of Biological Chemistry, 2013, 288, 17253-17260.	3.4	73

#	Article	IF	Citations
127	Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. ELife, 2013, 2, e01222.	6.0	105
128	APOBECs and Their Role in Proviral DNA Synthesis. , 2013, , 253-280.		0
129	Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G. PLoS Pathogens, 2012, 8, e1003085.	4.7	55
130	Endogenous Origins of HIV-1 G-to-A Hypermutation and Restriction in the Nonpermissive T Cell Line CEM2n. PLoS Pathogens, 2012, 8, e1002800.	4.7	90
131	Vif Proteins of Human and Simian Immunodeficiency Viruses Require Cellular CBFβ To Degrade APOBEC3 Restriction Factors. Journal of Virology, 2012, 86, 2874-2877.	3.4	65
132	The Restriction Factors of Human Immunodeficiency Virus. Journal of Biological Chemistry, 2012, 287, 40875-40883.	3.4	244
133	HIV Type 1 Viral Infectivity Factor and the RUNX Transcription Factors Interact with Core Binding Factor $\langle i \rangle \hat{l}^2 \langle j \rangle$ on Genetically Distinct Surfaces. AIDS Research and Human Retroviruses, 2012, 28, 1543-1551.	1.1	30
134	Extensive somatic L1 retrotransposition in colorectal tumors. Genome Research, 2012, 22, 2328-2338.	5.5	235
135	APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair. Blood, 2012, 120, 366-375.	1.4	63
136	Vif hijacks CBF-Î ² to degrade APOBEC3G and promote HIV-1 infection. Nature, 2012, 481, 371-375.	27.8	312
137	Methylcytosine and Normal Cytosine Deamination by the Foreign DNA Restriction Enzyme APOBEC3A. Journal of Biological Chemistry, 2012, 287, 34801-34808.	3.4	120
138	Nanoscale Structure and Dynamics of ABOBEC3G Complexes with Single-Stranded DNA. Biochemistry, 2012, 51, 6432-6440.	2.5	46
139	APOBEC3B and AID Have Similar Nuclear Import Mechanisms. Journal of Molecular Biology, 2012, 419, 301-314.	4.2	79
140	First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G. ACS Chemical Biology, 2012, 7, 506-517.	3.4	112
141	A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology, 2012, 1, 260-276.	2.8	16
142	Human and Rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H Demonstrate a Conserved Capacity To Restrict Vif-Deficient HIV-1. Journal of Virology, 2011, 85, 11220-11234.	3.4	310
143	Atomic Force Microscopy Studies Provide Direct Evidence for Dimerization of the HIV Restriction Factor APOBEC3G. Journal of Biological Chemistry, 2011, 286, 3387-3395.	3.4	91
144	Phosphorylation Directly Regulates the Intrinsic DNA Cytidine Deaminase Activity of Activation-induced Deaminase and APOBEC3G Protein. Journal of Biological Chemistry, 2011, 286, 26568-26575.	3.4	34

#	Article	IF	Citations
145	Crystal Structure of the APOBEC3G Catalytic Domain Reveals Potential Oligomerization Interfaces. Structure, 2010, 18, 28-38.	3.3	116
146	APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nature Structural and Molecular Biology, 2010, 17, 222-229.	8.2	295
147	Competition of Escherichia coli DNA Polymerases I, II and III with DNA Pol IV in Stressed Cells. PLoS ONE, 2010, 5, e10862.	2.5	45
148	The Interaction between AID and CIB1 Is Nonessential for Antibody Gene Diversification by Gene Conversion or Class Switch Recombination. PLoS ONE, 2010, 5, e11660.	2.5	9
149	Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Reviews in Molecular Medicine, 2010, 12, e4.	3.9	171
150	Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Research, 2010, 38, 4274-4284.	14.5	323
151	Lentiviral Vif Degrades the APOBEC3Z3/APOBEC3H Protein of Its Mammalian Host and Is Capable of Cross-Species Activity. Journal of Virology, 2010, 84, 8193-8201.	3.4	86
152	Long-Term Restriction by APOBEC3F Selects Human Immunodeficiency Virus Type 1 Variants with Restored Vif Function. Journal of Virology, 2010, 84, 10209-10219.	3.4	45
153	A Single Amino Acid in Human APOBEC3F Alters Susceptibility to HIV-1 Vif. Journal of Biological Chemistry, 2010, 285, 40785-40792.	3.4	46
154	APOBEC3G Contributes to HIV-1 Variation through Sublethal Mutagenesis. Journal of Virology, 2010, 84, 7396-7404.	3.4	161
155	Unique DNA Repair Gene Variations and Potential Associations with the Primary Antibody Deficiency Syndromes IgAD and CVID. PLoS ONE, 2010, 5, e12260.	2.5	45
156	Retrovirus Restriction Factors. , 2010, , 407-437.		0
157	AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucleic Acids Research, 2009, 37, 1854-1867.	14.5	64
158	Optimal Translation Initiation Enables Vif-Deficient Human Immunodeficiency Virus Type 1 To Escape Restriction by APOBEC3G. Journal of Virology, 2009, 83, 5956-5960.	3.4	27
159	Leveraging APOBEC3 proteins to alter the HIV mutation rate and combat AIDS. Future Virology, 2009, 4, 605-619.	1.8	26
160	Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins. Journal of Virology, 2009, 83, 494-497.	3.4	217
161	An Extended Structure of the APOBEC3G Catalytic Domain Suggests a Unique Holoenzyme Model. Journal of Molecular Biology, 2009, 389, 819-832.	4.2	101
162	Host Factors that Restrict Retrovirus Replication. , 2009, , 297-334.		O

#	Article	IF	CITATIONS
163	CEM-T4 Cells Do Not Lack an APOBEC3G Cofactor. PLoS Pathogens, 2009, 5, e1000528.	4.7	5
164	The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Molecular Biology, 2008, 9, 104.	3.0	169
165	Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature, 2008, 452, 116-119.	27.8	202
166	Enhancing immunity to HIV through APOBEC. Nature Biotechnology, 2008, 26, 1089-1090.	17.5	46
167	Evolution of HIV-1 Isolates that Use a Novel Vif-Independent Mechanism to Resist Restriction by Human APOBEC3G. Current Biology, 2008, 18, 819-824.	3.9	75
168	Human Immunodeficiency Virus Type 1 Vif Induces Cell Cycle Delay via Recruitment of the Same E3 Ubiquitin Ligase Complex That Targets APOBEC3 Proteins for Degradation. Journal of Virology, 2008, 82, 9265-9272.	3.4	41
169	The DNA Deaminase Activity of Human APOBEC3G Is Required for Ty1, MusD, and Human Immunodeficiency Virus Type 1 Restriction. Journal of Virology, 2008, 82, 2652-2660.	3.4	149
170	Two Regions within the Amino-Terminal Half of APOBEC3G Cooperate To Determine Cytoplasmic Localization. Journal of Virology, 2008, 82, 9591-9599.	3.4	68
171	Human Immunodeficiency Virus Type 1 cDNAs Produced in the Presence of APOBEC3G Exhibit Defects in Plus-Strand DNA Transfer and Integration. Journal of Virology, 2007, 81, 7099-7110.	3.4	247
172	DNA-Dependent Protein Kinase Inhibits AID-Induced Antibody Gene Conversion. PLoS Biology, 2007, 5, e80.	5. 6	15
173	Role for Msh5 in the regulation of Ig class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7193-7198.	7.1	142
174	Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G. FEBS Letters, 2007, 581, 4761-4766.	2.8	48
175	The Restriction of Zoonotic PERV Transmission by Human APOBEC3G. PLoS ONE, 2007, 2, e893.	2.5	44
176	MDM2 can interact with the C-terminus of AID but it is inessential for antibody diversification in DT40 B cells. Molecular Immunology, 2006, 43, 1099-1108.	2.2	41
177	Dancin' deaminase. Nature Structural and Molecular Biology, 2006, 13, 380-381.	8.2	3
178	Directed DNA deamination by AID/APOBEC3 in immunity. Current Biology, 2006, 16, R186-R189.	3.9	25
179	Evolutionarily conserved and non-conserved retrovirus restriction activities of artiodactyl APOBEC3F proteins. Nucleic Acids Research, 2006, 34, 5683-5694.	14.5	71
180	APOBEC3B and APOBEC3F Inhibit L1 Retrotransposition by a DNA Deamination-independent Mechanism*. Journal of Biological Chemistry, 2006, 281, 16837-16841.	3.4	243

#	Article	IF	CITATIONS
181	Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance. AIDS Reviews, 2006, 8, 148-57.	1.0	48
182	The Retroviral Hypermutation Specificity of APOBEC3F and APOBEC3G Is Governed by the C-terminal DNA Cytosine Deaminase Domain. Journal of Biological Chemistry, 2005, 280, 10920-10924.	3.4	166
183	APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9854-9859.	7.1	136
184	Retroviral restriction by APOBEC proteins. Nature Reviews Immunology, 2004, 4, 868-877.	22.7	581
185	APOBEC3F Properties and Hypermutation Preferences Indicate Activity against HIV-1 In Vivo. Current Biology, 2004, 14, 1385-1391.	3.9	411
186	Comparison of the Differential Context-dependence of DNA Deamination by APOBEC Enzymes: Correlation with Mutation Spectra in Vivo. Journal of Molecular Biology, 2004, 337, 585-596.	4.2	306
187	Immunity through DNA deamination. Trends in Biochemical Sciences, 2003, 28, 305-312.	7.5	214
188	The Vif Protein of HIV Triggers Degradation of the Human Antiretroviral DNA Deaminase APOBEC3G. Current Biology, 2003, 13, 2009-2013.	3.9	427
189	DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses. Nature Immunology, 2003, 4, 641-643.	14.5	77
190	DNA Deamination Mediates Innate Immunity to Retroviral Infection. Cell, 2003, 113, 803-809.	28.9	1,247
191	RNA Editing Enzyme APOBEC1 and Some of Its Homologs Can Act as DNA Mutators. Molecular Cell, 2002, 10, 1247-1253.	9.7	525
192	AID Is Essential for Immunoglobulin V Gene Conversion in a Cultured B Cell Line. Current Biology, 2002, 12, 435-438.	3.9	205
193	AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature, 2002, 418, 99-104.	27.8	808
194	Epstein-Barr Virus and the Somatic Hypermutation of Immunoglobulin Genes in Burkitt's Lymphoma Cells. Journal of Virology, 2001, 75, 10488-10492.	3.4	30
195	Somatic hypermutation and the three R's: repair, replication and recombination. Mutation Research - Reviews in Mutation Research, 1999, 436, 157-178.	5. 5	70
196	Recombination-based mechanisms for somatic hypermutation. Immunological Reviews, 1998, 162, 67-76.	6.0	21
197	Transient and Heritable Mutators in Adaptive Evolution in the Lab and in Nature. Genetics, 1998, 148, 1559-1566.	2.9	112
198	Mismatch Repair in Escherichia coli Cells Lacking Single-Strand Exonucleases Exol, ExoVII, and RecJ. Journal of Bacteriology, 1998, 180, 989-993.	2.2	33

#	Article	IF	CITATIONS
199	A direct role for DNA polymerase III in adaptive reversion of a frameshift mutation in Escherichia coli. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 375, 19-24.	1.0	51
200	Recombination-dependent mutation in non-dividing cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 350, 69-76.	1.0	39
201	Opposing Roles of the Holliday Junction Processing Systems of <i>Escherichia coli</i> in Recombination-Dependent Adaptive Mutation. Genetics, 1996, 142, 681-691.	2.9	147
202	Molecular handles on adaptive mutation. Molecular Microbiology, 1995, 18, 185-189.	2.5	95
203	Antibody Gene Diversification by Aid-Catalyzed DNA Editing. , 0, , 31-70.		0
204	The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by a RNA-Mediated Dimerization Mechanism. SSRN Electronic Journal, 0, , .	0.4	1
205	APOBEC3B Signature Mutations Benefit BK Polyomavirus. SSRN Electronic Journal, 0, , .	0.4	0