
Javier Llanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/671835/publications.pdf Version: 2024-02-01

INVIED LIANOS

#	Article	IF	CITATIONS
1	Adapting the low-cost pre-disinfection column PREDICO for simultaneous softening and disinfection of pore water. Chemosphere, 2022, 287, 132334.	4.2	1
2	Toward real applicability of electro-ozonizers: Paying attention to the gas phase using actual commercial PEM electrolyzers technology. Chemosphere, 2022, 289, 133141.	4.2	8
3	Understanding ozone generation in electrochemical cells at mild pHs. Electrochimica Acta, 2021, 376, 138033.	2.6	27
4	A review on the electrochemical production of chlorine dioxide from chlorates and hydrogen peroxide. Current Opinion in Electrochemistry, 2021, 27, 100685.	2.5	18
5	New insights about the electrochemical production of ozone. Current Opinion in Electrochemistry, 2021, 27, 100697.	2.5	28
6	Electrochemical generation of ozone using a PEM electrolyzer at acidic pHs. Separation and Purification Technology, 2021, 267, 118672.	3.9	21
7	On the production of ozone, hydrogen peroxide and peroxone in pressurized undivided electrochemical cells. Electrochimica Acta, 2021, 390, 138878.	2.6	13
8	Game-Based Learning and Just-in-Time Teaching to Address Misconceptions and Improve Safety and Learning in Laboratory Activities. Journal of Chemical Education, 2021, 98, 3118-3130.	1.1	9
9	An Old Technique with A Promising Future: Recent Advances in the Use of Electrodeposition for Metal Recovery. Molecules, 2021, 26, 5525.	1.7	3
10	ls ozone production able to explain the good performance of CabECO® technology in wastewater treatment?. Electrochimica Acta, 2021, 396, 139262.	2.6	6
11	Valorization of high-salinity effluents for CO2 fixation and hypochlorite generation. Chemosphere, 2021, 285, 131359.	4.2	3
12	Degradation of Neonicotinoids and Caffeine from Surface Water by Photolysis. Molecules, 2021, 26, 7277.	1.7	3
13	A comparison between flow-through cathode and mixed tank cells for the electro-Fenton process with conductive diamond anode. Chemosphere, 2020, 238, 124854.	4.2	19
14	Scaling-up an integrated electrodisinfection-electrocoagulation process for wastewater reclamation. Chemical Engineering Journal, 2020, 380, 122415.	6.6	39
15	Improved electrolysis of colloid-polluted wastes using ultrasounds and electrocoagulation. Separation and Purification Technology, 2020, 231, 115926.	3.9	20
16	ls it worth using the coupled electrodialysis/electro-oxidation system for the removal of pesticides? Process modelling and role of the pollutant. Chemosphere, 2020, 246, 125781.	4.2	10
17	Performance of ultrafiltration as a pre-concentration stage for the treatment of oxyfluorfen by electrochemical BDD oxidation. Separation and Purification Technology, 2020, 237, 116366.	3.9	13
18	Electro-disinfection with BDD-electrodes featuring PEM technology. Separation and Purification Technology, 2020, 248, 117081.	3.9	28

#	Article	lF	CITATIONS
19	How to avoid the formation of hazardous chlorates and perchlorates during electro-disinfection with diamond anodes?. Journal of Environmental Management, 2020, 265, 110566.	3.8	11
20	Electrochemically assisted dewatering for the removal of oxyfluorfen from a coagulation/flocculation sludge. Journal of Environmental Management, 2020, 258, 110015.	3.8	4
21	Testing the use of cells equipped with solid polymer electrolytes for electro-disinfection. Science of the Total Environment, 2020, 725, 138379.	3.9	26
22	Operating the CabECO® membrane electrolytic technology in continuous mode for the direct disinfection of highly fecal-polluted water. Separation and Purification Technology, 2019, 208, 110-115.	3.9	30
23	Development of a novel electrochemical coagulant dosing unit for water treatment. Journal of Chemical Technology and Biotechnology, 2019, 94, 216-221.	1.6	7
24	Combined electrochemical processes for the efficient degradation of non-polar organochlorine pesticides. Journal of Environmental Management, 2019, 248, 109289.	3.8	21
25	Can the substrate of the diamond anodes influence on the performance of the electrosynthesis of oxidants?. Journal of Electroanalytical Chemistry, 2019, 850, 113416.	1.9	19
26	Towards the scale up of a pressurized-jet microfluidic flow-through reactor for cost-effective electro-generation of H2O2. Journal of Cleaner Production, 2019, 211, 1259-1267.	4.6	50
27	Reactor design as a critical input in the electrochemical production of peroxoacetic acid. Journal of Chemical Technology and Biotechnology, 2019, 94, 2955-2960.	1.6	6
28	Enhancing the Teaching of Corrosion to Chemical-Engineering Students through Laboratory Experiments. Journal of Chemical Education, 2019, 96, 1029-1032.	1.1	2
29	Electrochemical production of perchlorate as an alternative for the valorization of brines. Chemosphere, 2019, 220, 637-643.	4.2	9
30	On the design of a jet-aerated microfluidic flow-through reactor for wastewater treatment by electro-Fenton. Separation and Purification Technology, 2019, 208, 123-129.	3.9	40
31	The pressurized jet aerator: A new aeration system for high-performance H2O2 electrolyzers. Electrochemistry Communications, 2018, 89, 19-22.	2.3	35
32	Effect of air pressure on the electro-Fenton process at carbon felt electrodes. Electrochimica Acta, 2018, 273, 447-453.	2.6	36
33	Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochimica Acta, 2018, 263, 1-7.	2.6	124
34	Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2,4-dichlorophenoxyacetic acid. Electrochimica Acta, 2018, 269, 415-421.	2.6	30
35	Hydrogen from electrochemical reforming of ethanol assisted by sulfuric acid addition. Applied Catalysis B: Environmental, 2018, 231, 310-316.	10.8	32
36	Optimization of a cell for the electrochemical synergistic production of peroxoacetic acid. Electrochimica Acta, 2018, 260, 177-183.	2.6	7

#	Article	IF	CITATIONS
37	Can CabECO® technology be used for the disinfection of highly faecal-polluted surface water?. Chemosphere, 2018, 209, 346-352.	4.2	30
38	Development of an innovative approach for low-impact wastewater treatment: A microfluidic flow-through electrochemical reactor. Chemical Engineering Journal, 2018, 351, 766-772.	6.6	55
39	Pre-disinfection columns to improve the performance of the direct electro-disinfection of highly faecal-polluted surface water. Journal of Environmental Management, 2018, 222, 135-140.	3.8	12
40	Use of process simulator to enhance the teachingâ€learning process of flow of fluids for engineering students. Computer Applications in Engineering Education, 2018, 26, 980-993.	2.2	8
41	ENHANCEMENT IN THE ACQUISITION OF THE SUSTAINABILITY KEY COMPETENCE THROUGHOUT THE WHOLE DEGREE OF CHEMICAL ENGINEERING. EDULEARN Proceedings, 2018, , .	0.0	0
42	Electrocoagulation as the Key for an Efficient Concentration and Removal of Oxyfluorfen from Liquid Wastes. Industrial & Engineering Chemistry Research, 2017, 56, 3091-3097.	1.8	24
43	Improving the Efficiency of Carbon Cloth for the Electrogeneration of H ₂ O ₂ : Role of Polytetrafluoroethylene and Carbon Black Loading. Industrial & Engineering Chemistry Research, 2017, 56, 12588-12595.	1.8	80
44	Effect of pressure on the electrochemical generation of hydrogen peroxide in undivided cells on carbon felt electrodes. Electrochimica Acta, 2017, 248, 169-177.	2.6	59
45	A microfluidic flow-through electrochemical reactor for wastewater treatment: A proof-of-concept. Electrochemistry Communications, 2017, 82, 85-88.	2.3	43
46	The jet aerator as oxygen supplier for the electrochemical generation of H2O2. Electrochimica Acta, 2017, 246, 466-474.	2.6	47
47	Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation. Journal of Environmental Management, 2017, 195, 216-223.	3.8	51
48	Electrocoagulation as a key technique in the integrated urban water cycle – A case study in the centre of Spain. Urban Water Journal, 2017, 14, 650-654.	1.0	10
49	Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2,4-dichlorophenoxyacetic acid. Chemosphere, 2017, 182, 85-89.	4.2	37
50	Electrochemical jet-cell for the in-situ generation of hydrogen peroxide. Electrochemistry Communications, 2016, 71, 65-68.	2.3	104
51	Synergistic integration of sonochemical and electrochemical disinfection with DSA anodes. Chemosphere, 2016, 163, 562-568.	4.2	42
52	Use of DiaCell modules for the electro-disinfection of secondary-treated wastewater with diamond anodes. Chemical Engineering Journal, 2016, 306, 433-440.	6.6	40
53	Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. Environmental Science and Pollution Research, 2016, 23, 19713-19722.	2.7	19
54	Integration of anodic and cathodic processes for the synergistic electrochemical production of peracetic acid. Electrochemistry Communications, 2016, 73, 1-4.	2.3	13

#	Article	IF	CITATIONS
55	Solar-powered electrokinetic remediation for the treatment of soil polluted with the herbicide 2,4-D. Electrochimica Acta, 2016, 190, 371-377.	2.6	49
56	Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil. Journal of Environmental Management, 2016, 171, 128-132.	3.8	16
57	Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. Journal of Hazardous Materials, 2016, 319, 93-101.	6.5	91
58	HOW DID WE FACE THE ACCREDITATION PROCESS FOR THE FIRST TIME AND WHAT DID WE LEARN? THE CHE PROGRAMS AT THE UCLM. , 2016, , .		0
59	ECONOMIC FEASIBILITY STUDY AND ENVIRONMENTAL IMPACT ASSESSMENT OF PHASE CHANGE MATERIALS INCORPORATION IN BUILDINGS. , 2016, , .		0
60	A wind-powered BDD electrochemical oxidation process for the removal of herbicides. Journal of Environmental Management, 2015, 158, 36-39.	3.8	46
61	Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2,4-D. Chemical Engineering Journal, 2015, 277, 64-69.	6.6	27
62	Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. Journal of Applied Electrochemistry, 2015, 45, 799-808.	1.5	48
63	Physical–Chemical Characterization of Fruit Purees and Relationship with Sensory Analysis Carried out by Infants (12 to 24 mo). Journal of Food Science, 2015, 80, E1005-11.	1.5	5
64	Conductive diamond sono-electrochemical disinfection (CDSED) for municipal wastewater reclamation. Ultrasonics Sonochemistry, 2015, 22, 493-498.	3.8	27
65	Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters. Applied Catalysis B: Environmental, 2015, 162, 252-259.	10.8	79
66	Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process. Water Research, 2014, 53, 329-338.	5.3	64
67	Analysis of photocurrent and capacitance of TiO2 nanotube–polyaniline hybrid composites synthesized through electroreduction of an aryldiazonium salt. RSC Advances, 2014, 4, 23957-23965.	1.7	19
68	Coupling UV irradiation and electrocoagulation for reclamation of urban wastewater. Electrochimica Acta, 2014, 140, 396-403.	2.6	34
69	Novel electrodialysis–electrochlorination integrated process for the reclamation of treated wastewaters. Separation and Purification Technology, 2014, 132, 362-369.	3.9	29
70	Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. Water Research, 2013, 47, 1741-1750.	5.3	88
71	The Treatment of Actual Industrial Wastewaters Using Electrochemical Techniques. Electrocatalysis, 2013, 4, 252-258.	1.5	19
72	On the applications of peroxodiphosphate produced by BDD-electrolyses. Chemical Engineering Journal, 2013, 233, 8-13.	6.6	54

#	Article	IF	CITATIONS
73	Treatment of Cu/Zn wastes by combined PSU–electrodeposition processes. Journal of Environmental Management, 2013, 116, 181-185.	3.8	3
74	Neuro-evolutionary modelling of the electrodeposition stage of a polymer-supported ultrafiltration–electrodeposition process for the recovery of heavy metals. Environmental Modelling and Software, 2013, 42, 133-142.	1.9	7
75	Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media. Journal of Hazardous Materials, 2012, 213-214, 478-484.	6.5	80
76	Electrochemical denitrificacion with chlorides using DSA and BDD anodes. Chemical Engineering Journal, 2012, 184, 66-71.	6.6	123
77	Cationâ€exchange membranes: Comparison of homopolymer, block copolymer, and heterogeneous membranes. Journal of Applied Polymer Science, 2012, 124, E66.	1.3	16
78	Arsenic removal from drinking water through a hybrid ion exchange membrane – Coagulation process. Separation and Purification Technology, 2011, 83, 137-143.	3.9	66
79	Costs estimation of an integrated process for the treatment of heavy-metal loaded aqueous effluents. Journal of Applied Electrochemistry, 2011, 41, 1099-1107.	1.5	13
80	Removal of nitrates by electrolysis in non-chloride media: Effect of the anode material. Separation and Purification Technology, 2011, 80, 592-599.	3.9	62
81	Treatment of copper (II)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition. Separation and Purification Technology, 2010, 70, 320-328.	3.9	62
82	Polymer supported ultrafiltration as a technique for selective heavy metal separation and complex formation constants prediction. Separation and Purification Technology, 2010, 73, 126-134.	3.9	28
83	Characterization of a ceramic ultrafiltration membrane in different operational states after its use in a heavy-metal ion removal process. Water Research, 2010, 44, 3522-3530.	5.3	47
84	Water-soluble polymer ultrafiltration process at pilot scale: Study of hydrodynamics and factors limiting flux. Journal of Membrane Science, 2009, 341, 37-45.	4.1	17
85	Electrochemical regeneration of partially ethoxylated polyethylenimine used in the polymer-supported ultrafiltration of copper. Journal of Hazardous Materials, 2009, 168, 25-30.	6.5	11
86	Copper recovery by polymer enhanced ultrafiltration (PEUF) and electrochemical regeneration. Journal of Membrane Science, 2008, 323, 28-36.	4.1	40
87	Preliminary design and optimisation of a PEUF process for Cr(VI) removal. Desalination, 2008, 223, 229-237.	4.0	29
88	Removal of polyether-polyols by means of ultrafiltration. Desalination, 2007, 206, 594-601.	4.0	2
89	Selective separation of Pb from hard water by a semi-continuous polymer-enhanced ultrafiltration process (PEUF). Desalination, 2007, 206, 602-613.	4.0	38
90	Tannic acid removal from aqueous effluents using micellar enhanced ultrafiltration at pilot scale. Desalination, 2006, 200, 310-312.	4.0	17

#	Article	IF	CITATIONS
91	Remarkable hydrodechlorination activity over silica supported nickel/gold catalysts. Catalysis Communications, 2005, 6, 555-562.	1.6	29