Frank D Gilliland

List of Publications by Citations

Source: https://exaly.com/author-pdf/6718294/frank-d-gilliland-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

126 papers

6,994 citations

42 h-index 82 g-index

144 ext. papers

8,653 ext. citations

8.5 avg, IF

5.54 L-index

#	Paper	IF	Citations
126	Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. <i>Nature Genetics</i> , 2011 , 43, 887-92	36.3	605
125	Asthma in exercising children exposed to ozone: a cohort study. Lancet, The, 2002, 359, 386-91	40	553
124	Traffic, susceptibility, and childhood asthma. <i>Environmental Health Perspectives</i> , 2006 , 114, 766-72	8.4	459
123	Childhood incident asthma and traffic-related air pollution at home and school. <i>Environmental Health Perspectives</i> , 2010 , 118, 1021-6	8.4	389
122	Association of improved air quality with lung development in children. <i>New England Journal of Medicine</i> , 2015 , 372, 905-13	59.2	371
121	Obesity and the risk of newly diagnosed asthma in school-age children. <i>American Journal of Epidemiology</i> , 2003 , 158, 406-15	3.8	289
120	Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. <i>Lancet, The</i> , 2004 , 363, 119-25	40	270
119	Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. <i>Nature Genetics</i> , 2018 , 50, 42-53	36.3	246
118	Quality-of-life outcomes after primary androgen deprivation therapy: results from the Prostate Cancer Outcomes Study. <i>Journal of Clinical Oncology</i> , 2001 , 19, 3750-7	2.2	201
117	The effects of ambient air pollution on school absenteeism due to respiratory illnesses. <i>Epidemiology</i> , 2001 , 12, 43-54	3.1	174
116	Regular smoking and asthma incidence in adolescents. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2006 , 174, 1094-100	10.2	135
115	Childrenß lung function and antioxidant vitamin, fruit, juice, and vegetable intake. <i>American Journal of Epidemiology</i> , 2003 , 158, 576-84	3.8	107
114	Associations of children ß lung function with ambient air pollution: joint effects of regional and near-roadway pollutants. <i>Thorax</i> , 2014 , 69, 540-7	7.3	98
113	Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. <i>PLoS ONE</i> , 2014 , 9, e99716	3.7	94
112	Epigenome-wide meta-analysis of DNA methylation and childhood asthma. <i>Journal of Allergy and Clinical Immunology</i> , 2019 , 143, 2062-2074	11.5	87
111	Genetic ancestry influences asthma susceptibility and lung function among Latinos. <i>Journal of Allergy and Clinical Immunology</i> , 2015 , 135, 228-35	11.5	85
110	Genome-wide association study and admixture mapping identify different asthma-associated loci in Latinos: the Genes-environments & Admixture in Latino Americans study. <i>Journal of Allergy and Clinical Immunology</i> , 2014 , 134, 295-305	11.5	84

(2018-2017)

Longitudinal Associations Between Ambient Air Pollution With Insulin Sensitivity, ECell Function, and Adiposity in Los Angeles Latino Children. <i>Diabetes</i> , 2017 , 66, 1789-1796	0.9	82
Air pollution affects lung cancer survival. <i>Thorax</i> , 2016 , 71, 891-8	7.3	79
Transforming growth factor- 1 C-509T polymorphism, oxidant stress, and early-onset childhood asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2007 , 176, 1192-9	10.2	77
Stress and Bronchodilator Response in Children with Asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2015 , 192, 47-56	10.2	71
Effects of Childhood Asthma on the Development of Obesity among School-aged Children. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2017 , 195, 1181-1188	10.2	68
Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. <i>Thorax</i> , 2007 , 62, 1050-7	7-3	68
Air pollution exposure assessment for epidemiologic studies of pregnant women and children: lessons learned from the Centers for Children® Environmental Health and Disease Prevention Research. <i>Environmental Health Perspectives</i> , 2005 , 113, 1447-54	8.4	66
Association of Changes in Air Quality With Bronchitic Symptoms in Children in California, 1993-2012. <i>JAMA - Journal of the American Medical Association</i> , 2016 , 315, 1491-501	27.4	64
Outdoor air pollution, genetic susceptibility, and asthma management: opportunities for intervention to reduce the burden of asthma. <i>Pediatrics</i> , 2009 , 123 Suppl 3, S168-73	7.4	63
Association of Changes in Air Quality With Incident Asthma in Children in California, 1993-2014. JAMA - Journal of the American Medical Association, 2019 , 321, 1906-1915	27.4	62
Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2015 , 191, 1116-25	10.2	62
Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children Health Study. <i>Journal of Thoracic Disease</i> , 2015 , 7, 46-58	2.6	60
Glutathione s-transferases M1 and P1 prevent aggravation of allergic responses by secondhand smoke. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2006 , 174, 1335-41	10.2	57
Ethnic-specific associations of rare and low-frequency DNA sequence variants with asthma. <i>Nature Communications</i> , 2015 , 6, 5965	17.4	56
Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. <i>Environment International</i> , 2018 , 118, 48-59	12.9	56
Dietary Fiber-Induced Microbial Short Chain Fatty Acids Suppress ILC2-Dependent Airway Inflammation. <i>Frontiers in Immunology</i> , 2019 , 10, 2051	8.4	55
Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. <i>Environment International</i> , 2019 , 126, 445-453	12.9	54
Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. <i>Environmental Research</i> , 2018 , 161, 472-478	7.9	53
	Air pollution affects lung cancer survival. <i>Thorax</i> , 2016, 71, 891-8 Transforming growth factor-1 C-509T polymorphism, oxidant stress, and early-onset childhood asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2007, 176, 1192-9 Stress and Bronchodilator Response in Children with Asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2015, 192, 47-56 Effects of Childhood Asthma on the Development of Obesity among School-aged Children. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2017, 195, 1181-1188 Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. <i>Thorax</i> , 2007, 62, 1050-7 Air pollution exposure assessment for epidemiologic studies of pregnant women and children: lessons learned from the Centers for Children® Environmental Health and Disease Prevention Research. <i>Environmental Health Perspectives</i> , 2005, 113, 1447-54 Association of Changes in Air Quality With Bronchitic Symptoms in Children in California, 1993-2012. <i>JAMA – Journal of the American Medical Association</i> , 2016, 315, 1491-501 Outdoor air pollution, genetic susceptibility, and asthma management: opportunities for intervention to reduce the burden of asthma. <i>Pediatrics</i> , 2009, 123 Suppl 3, 5168-73 Association of Changes in Air Quality With Incident Asthma in Children in California, 1993-2014. <i>JAMA – Journal of the American Medical Association</i> , 2019, 321, 1906-1915 Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2015, 191, 1116-25 Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children® Health Study. <i>Journal of Thoracic Disease</i> , 2015, 7, 46-58 Glutathione s-transferases M and P1 prevent aggravation of allergic responses by secondhand smoke. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2006, 174, 1335-41 Ethnic-specific associations of rare a	Air pollution affects lung cancer survival. Thorax, 2016, 71, 891-8 Transforming growth factor- 1 C-509T polymorphism, oxidant stress, and early-onset childhood asthma. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 1192-9 Stress and Bronchodilator Response in Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 1192-9 Stress and Bronchodilator Response in Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 47-56 Effects of Childhood Asthma on the Development of Obesity among School-aged Children. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1181-1188 Microsomal epoxide hydrolase, glutathione 5-transferase P1, traffic and childhood asthma. Thorax, 2007, 62, 1050-7 Air pollution exposure assessment for epidemiologic studies of pregnant women and children: lessons learned from the Centers for Childrenß Environmental Health and Disease Prevention Research. Environmental Health Perspectives, 2005, 113, 1447-54 Association of Changes in Air Quality With Bronchitic Symptoms in Children in California, 1993-2012. JAMA - Journal of the American Medical Association, 2016, 315, 1491-501 Qutdoor air pollution, genetic susceptibility, and asthma management: opportunities for intervention to reduce the burden of asthma. Pediatrics, 2009, 123 Suppl 3, 5168-73 74 Association of Changes in Air Quality With Incident Asthma in Children in California, 1993-2014. JAMA - Journal of the American Medical Association, 2019, 321, 1906-1915 Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1116-25 Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Childrenß Health Study. Journal of Thoracic Disease, 2015, 7, 46-58 Clutathione s-transferases M1 and P1 prevent aggravation of allergic responses by secondhand smok

91	Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. <i>Nature Genetics</i> , 2018 , 50, 1072-1080	36.3	52
90	Associations of air pollution, obesity and cardiometabolic health in young adults: The Meta-AIR study. <i>Environment International</i> , 2019 , 133, 105180	12.9	52
89	Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report. <i>Annals of the American Thoracic Society</i> , 2020 , 17, 387-398	4.7	52
88	Genome-wide interaction studies reveal sex-specific asthma risk alleles. <i>Human Molecular Genetics</i> , 2014 , 23, 5251-9	5.6	50
87	Particulate matter air pollution and liver cancer survival. <i>International Journal of Cancer</i> , 2017 , 141, 744-	-7/49	48
86	High intake of dietary fructose in overweight/obese teenagers associated with depletion of and in gut microbiome. <i>Gut Microbes</i> , 2019 , 10, 712-719	8.8	48
85	Longitudinal associations of in utero and early life near-roadway air pollution with trajectories of childhood body mass index. <i>Environmental Health</i> , 2018 , 17, 64	6	44
84	Air Pollution and Lung Function in Minority Youth with Asthma in the GALA II (Genes-Environments and Admixture in Latino Americans) and SAGE II (Study of African Americans, Asthma, Genes, and Environments) Studies. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 193, 1271-80	10.2	41
83	Costimulation of type-2 innate lymphoid cells by GITR promotes effector function and ameliorates type 2 diabetes. <i>Nature Communications</i> , 2019 , 10, 713	17.4	41
82	A genome-wide survey of CD4(+) lymphocyte regulatory genetic variants identifies novel asthma genes. <i>Journal of Allergy and Clinical Immunology</i> , 2014 , 134, 1153-62	11.5	40
81	Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. <i>Journal of Thoracic Disease</i> , 2018 , 10, 3088-3097	2.6	40
80	Gene Expression Profiling in Blood Provides Reproducible Molecular Insights into Asthma Control. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2017 , 195, 179-188	10.2	37
79	Effects of glutathione S-transferase P1, M1, and T1 on acute respiratory illness in school children. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2002 , 166, 346-51	10.2	37
78	Glutathione S-transferase P1 and NADPH quinone oxidoreductase polymorphisms are associated with aberrant promoter methylation of P16(INK4a) and O(6)-methylguanine-DNA methyltransferase in sputum. <i>Cancer Research</i> , 2002 , 62, 2248-52	10.1	36
77	Spatiotemporal Imputation of MAIAC AOD Using Deep Learning with Downscaling. <i>Remote Sensing of Environment</i> , 2020 , 237,	13.2	35
76	Ambient Air Pollution Is Associated With the Severity of Coronary Atherosclerosis and Incident Myocardial Infarction in Patients Undergoing Elective Cardiac Evaluation. <i>Journal of the American Heart Association</i> , 2016 , 5,	6	35
75	Ambient and Traffic-Related Air Pollution Exposures as Novel Risk Factors for Metabolic Dysfunction and Type 2 Diabetes. <i>Current Epidemiology Reports</i> , 2018 , 5, 79-91	2.9	34
74	Longitudinal effects of air pollution on exhaled nitric oxide: the Children® Health Study. Occupational and Environmental Medicine. 2014. 71. 507-13	2.1	33

(2013-2016)

Exhaled NO: Determinants and Clinical Application in Children With Allergic Airway Disease. <i>Allergy, Asthma and Immunology Research</i> , 2016 , 8, 12-21	5.3	33
Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. <i>Nature Communications</i> , 2020 , 11, 1776	17.4	33
Traffic-related air pollution and alveolar nitric oxide in southern California children. <i>European Respiratory Journal</i> , 2016 , 47, 1348-56	13.6	32
Increasing incidence of colon and rectal cancer among Hispanics and American Indians in New Mexico (United States), 1969-94. <i>Cancer Causes and Control</i> , 1998 , 9, 137-44	2.8	31
A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. <i>Human Molecular Genetics</i> , 2019 , 28, 3327-3338	5.6	30
Dietary magnesium, potassium, sodium, and childrenß lung function. <i>American Journal of Epidemiology</i> , 2002 , 155, 125-31	3.8	30
Does early onset asthma increase childhood obesity risk? A pooled analysis of 16 European cohorts. <i>European Respiratory Journal</i> , 2018 , 52,	13.6	30
Prenatal Air Pollution Exposure and Early Cardiovascular Phenotypes in Young Adults. <i>PLoS ONE</i> , 2016 , 11, e0150825	3.7	27
Spatial Variation in Particulate Matter Components over a Large Urban Area. <i>Atmospheric Environment</i> , 2014 , 83, 211-219	5.3	25
Association of Prenatal Exposure to Ambient and Traffic-Related Air Pollution With Newborn Thyroid Function: Findings From the Childrenß Health Study. <i>JAMA Network Open</i> , 2018 , 1, e182172	10.4	25
Elucidation of causal direction between asthma and obesity: a bi-directional Mendelian randomization study. <i>International Journal of Epidemiology</i> , 2019 , 48, 899-907	7.8	23
Ensemble-based deep learning for estimating PM over California with multisource big data including wildfire smoke. <i>Environment International</i> , 2020 , 145, 106143	12.9	21
Indoor and Outdoor Air Pollution- related Health Problem in Ethiopia: Review of Related Literature. <i>Ethiopian Journal of Health Development</i> , 2016 , 30, 5-16		20
An admixture mapping meta-analysis implicates genetic variation at 18q21 with asthma susceptibility in Latinos. <i>Journal of Allergy and Clinical Immunology</i> , 2019 , 143, 957-969	11.5	20
Estimation of parameters in the two-compartment model for exhaled nitric oxide. <i>PLoS ONE</i> , 2014 , 9, e85471	3.7	19
Particulate matter, the newborn methylome, and cardio-respiratory health outcomes in childhood. <i>Environmental Epigenetics</i> , 2016 , 2, dvw005	2.4	19
Study Design, Protocol and Profile of the Maternal And Developmental Risks from Environmental and Social Stressors (MADRES) Pregnancy Cohort: a Prospective Cohort Study in Predominantly Low-Income Hispanic Women in Urban Los Angeles. <i>BMC Pregnancy and Childbirth</i> , 2019 , 19, 189	3.2	18
Multiple-flow exhaled nitric oxide, allergy, and asthma in a population of older children. <i>Pediatric Pulmonology</i> , 2013 , 48, 885-96	3.5	18
	Asthma and Immunology Research, 2016, 8, 12-21 Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nature Communications, 2020, 11, 1776 Traffic-related air pollution and alveolar nitric oxide in southern California children. European Respiratory Journal, 2016, 47, 1348-56 Increasing incidence of colon and rectal cancer among Hispanics and American Indians in New Mexico (United States), 1969-94. Cancer Causes and Control, 1998, 9, 137-44 A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Human Molecular Genetics, 2019, 28, 3327-3338 Dietary magnesium, potassium, sodium, and childrenß lung function. American Journal of Epidemiology, 2002, 155, 125-31 Does early onset asthma increase childhood obesity risk? A pooled analysis of 16 European cohorts. European Respiratory Journal, 2018, 52, Prenatal Air Pollution Exposure and Early Cardiovascular Phenotypes in Young Adults. PLoS ONE, 2016, 11, e0150825 Spatial Variation in Particulate Matter Components over a Large Urban Area. Atmospheric Environment, 2014, 83, 211-219 Association of Prenatal Exposure to Ambient and Traffic-Related Air Pollution With Newborn Thyroid Function: Findings From the Childrenß Health Study. JAMA Network Open, 2018, 1, e182172 Elucidation of causal direction between asthma and obesity: a bi-directional Mendelian randomization study. International Journal of Epidemiology, 2019, 48, 899-907 Ensemble-based deep learning for estimating PM over California with multisource big data including wildfire smoke. Environment International, 2020, 145, 106143 Indoor and Outdoor Air Pollution- related Health Problem in Ethiopian Journal of Health Development, 2016, 30, 5-16 An admixture mapping meta-analysis implicates genetic variation at 18q21 with asthma susceptibility in Latinos. Journal of Allergy and Clinical Immunology, 2019, 143, 957-969 Estimation of parameters in the two-compartment model for exhaled nitric oxid	Asthma and Immunology Research, 2016, 8, 12-21 Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nature Communications, 2020, 11, 1776 174 Traffic-related air pollution and alveolar nitric oxide in southern California children. European Respiratory Journal, 2016, 47, 1348-56 Increasing incidence of colon and rectal cancer among Hispanics and American Indians in New Mexico (United States), 1969-94. Cancer Causes and Control, 1998, 9, 137-44 A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Human Molecular Genetics, 2019, 28, 3327-3338 Dietary magnesium, potassium, sodium, and childrenß lung function. American Journal of Epidemiology, 2002, 155, 125-31 Does early onset asthma increase childhood obesity risk? A pooled analysis of 16 European cohorts. European Respiratory Journal, 2018, 52. Prenatal Air Pollution Exposure and Early Cardiovascular Phenotypes in Young Adults. PLoS ONE, 2016, 11, e0150825 Spatial Variation in Particulate Matter Components over a Large Urban Area. Atmospheric Environment, 2014, 83, 211-219 Association of Prenatal Exposure to Ambient and Traffic-Related Air Pollution With Newborn Thyroid Function: Findings From the Childrenß Health Study. JAMA Network Open, 2018, 1, e182172 Elucidation of causal direction between asthma and obesity: a bi-directional Mendellian randomization study. International Journal of Epidemiology, 2019, 48, 899-907 Ensemble-based deep learning for estimating PM over California with multisource big data including wildfire smoke. Environment International, 2020, 145, 106143 Indoor and Outdoor Air Pollution-related Health Problem in Ethiopia: Review of Related Literature. Ethiopian Journal of Health Development, 2016, 30, 5-16 An admixture mapping meta-analysis implicates genetic variation at 18q21 with asthma susceptibility in Latinos. Journal of Allergy and Clinical Immunology, 2019, 143, 957-969 Estimation of parameters in the

55	Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable SensorsRData. <i>JMIR MHealth and UHealth</i> , 2019 , 7, e11201	5.5	18
54	Role of local CpG DNA methylation in mediating the 17q21 asthma susceptibility gasdermin B (GSDMB)/ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) expression quantitative trait locus. <i>Journal of Allergy and Clinical Immunology</i> , 2018 , 141, 2282-2286.e6	11.5	17
53	Analysis of bisphenol A diglycidyl ether (BADGE) and its hydrolytic metabolites in biological specimens by high-performance liquid chromatography and tandem mass spectrometry. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2014 , 965, 33-8	3.2	17
52	Regional and traffic-related air pollutants are associated with higher consumption of fast food and trans fat among adolescents. <i>American Journal of Clinical Nutrition</i> , 2019 , 109, 99-108	7	17
51	15q12 variants, sputum gene promoter hypermethylation, and lung cancer risk: a GWAS in smokers. <i>Journal of the National Cancer Institute</i> , 2015 , 107,	9.7	16
50	Cluster-based bagging of constrained mixed-effects models for high spatiotemporal resolution nitrogen oxides prediction over large regions. <i>Environment International</i> , 2019 , 128, 310-323	12.9	14
49	Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study. <i>Toxicological Sciences</i> , 2015 , 148, 89-100	4.4	14
48	Genetic and epigenetic susceptibility of airway inflammation to PM in school children: new insights from quantile regression. <i>Environmental Health</i> , 2017 , 16, 88	6	14
47	Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	13
46	Extended exhaled nitric oxide analysis in field surveys of schoolchildren: a pilot test. <i>Pediatric Pulmonology</i> , 2009 , 44, 1033-42	3.5	13
45	COVID-19 mortality in California based on death certificates: disproportionate impacts across racial/ethnic groups and nativity. <i>Annals of Epidemiology</i> , 2021 , 58, 69-75	6.4	13
44	Determinants of the Spatial Distributions of Elemental Carbon and Particulate Matter in Eight Southern Californian Communities. <i>Atmospheric Environment</i> , 2014 , 86, 84-92	5.3	12
43	Occupational Health and Safety in Ethiopia: A review of Situational Analysis and Needs Assessment. <i>Ethiopian Journal of Health Development</i> , 2016 , 30, 17-27		12
42	Contribution of tailpipe and non-tailpipe traffic sources to quasi-ultrafine, fine and coarse particulate matter in southern California. <i>Journal of the Air and Waste Management Association</i> , 2021 , 71, 209-230	2.4	12
41	Within-subject effects of environmental and social stressors on pre- and post-partum obesity-related biobehavioral responses in low-income Hispanic women: protocol of an intensive longitudinal study. <i>BMC Public Health</i> , 2019 , 19, 253	4.1	11
40	Effects of policy-driven hypothetical air pollutant interventions on childhood asthma incidence in southern California. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 15883-15888	11.5	11
39	The Dynamic Relationship Between Asthma and Obesity in Schoolchildren. <i>American Journal of Epidemiology</i> , 2020 , 189, 583-591	3.8	11
38	Asthma Disease Status, COPD, and COVID-19 Severity in a Large Multiethnic Population. <i>Journal of Allergy and Clinical Immunology: in Practice</i> , 2021 , 9, 3621-3628.e2	5.4	10

(2020-2020)

37	Biomedical REAl-Time Health Evaluation (BREATHE): toward an mHealth informatics platform. JAMIA Open, 2020 , 3, 190-200	2.9	9
36	Gene Coexpression Networks in Whole Blood Implicate Multiple Interrelated Molecular Pathways in Obesity in People with Asthma. <i>Obesity</i> , 2018 , 26, 1938-1948	8	9
35	Single-Cell Digital Lysates Generated by Phase-Switch Microfluidic Device Reveal Transcriptome Perturbation of Cell Cycle. <i>ACS Nano</i> , 2018 , 12, 4687-4694	16.7	8
34	Gene Promoter Hypermethylation Detected in Sputum Predicts FEV Decline and All-Cause Mortality in Smokers. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2018 , 198, 187-196	10.2	7
33	The Potential Effects of Policy-driven Air Pollution Interventions on Childhood Lung Development. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2020 , 201, 438-444	10.2	7
32	Exposure measurement error in air pollution studies: A framework for assessing shared, multiplicative measurement error in ensemble learning estimates of nitrogen oxides. <i>Environment International</i> , 2019 , 125, 97-106	12.9	6
31	Exposure Measurement Error in Air Pollution Studies: The Impact of Shared, Multiplicative Measurement Error on Epidemiological Health Risk Estimates. <i>Air Quality, Atmosphere and Health</i> , 2020 , 13, 631-643	5.6	6
30	RISK EFFECTS OF NEAR-ROADWAY POLLUTANTS AND ASTHMA STATUS ON BRONCHITIC SYMPTOMS IN CHILDREN. <i>Environmental Epidemiology</i> , 2018 , 2,	0.2	6
29	Understanding the importance of key risk factors in predicting chronic bronchitic symptoms using a machine learning approach. <i>BMC Medical Research Methodology</i> , 2019 , 19, 70	4.7	5
28	Implication of a Chromosome 15q15.2 Locus in Regulating UBR1 and Predisposing Smokers to MGMT Methylation in Lung. <i>Cancer Research</i> , 2015 , 75, 3108-17	10.1	5
27	Genetic Ancestry and Asthma and Rhinitis Occurrence in Hispanic Children: Findings from the Southern California Childrenß Health Study. <i>PLoS ONE</i> , 2015 , 10, e0135384	3.7	5
26	Mapping the 17q12-21.1 Locus for Variants Associated with Early-Onset Asthma in African Americans. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2021 , 203, 424-436	10.2	5
25	US Childhood Asthma Incidence Rate Patterns From the ECHO Consortium to Identify High-risk Groups for Primary Prevention. <i>JAMA Pediatrics</i> , 2021 , 175, 919-927	8.3	5
24	Asthma Bridge: The Asthma Biorepository For Integrative Genomic Exploration 2011 ,		4
23	Chemical Characterization and Seasonality of Ambient Particles (PM) in the City Centre of Addis Ababa. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	4
22	A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity. <i>PLoS Genetics</i> , 2019 , 15, e1008528	6	4
21	Dietary Nutrient Intake, Ethnicity, and Epigenetic Silencing of Lung Cancer Genes Detected in Sputum in New Mexican Smokers. <i>Cancer Prevention Research</i> , 2018 , 11, 93-102	3.2	4
20	Lung Function in African American Children with Asthma Is Associated with Novel Regulatory Variants of the KIT Ligand and Gene-By-Air-Pollution Interaction. <i>Genetics</i> , 2020 , 215, 869-886	4	3

19	Exposure to Perfluoroalkyl Substances and Glucose Homeostasis in Youth. <i>Environmental Health Perspectives</i> , 2021 , 129, 97002	8.4	3
18	Near-roadway air pollution associated with COVID-19 severity and mortality - Multiethnic cohort study in Southern California. <i>Environment International</i> , 2021 , 157, 106862	12.9	3
17	Determinants of Childrenß Exhaled Nitric Oxide: New Insights from Quantile Regression. <i>PLoS ONE</i> , 2015 , 10, e0130505	3.7	2
16	Ambient air pollution and COVID-19 incidence during four 2020-2021 case surges <i>Environmental Research</i> , 2022 , 208, 112758	7.9	2
15	Asthma and its relationship to mitochondrial copy number: Results from the Asthma Translational Genomics Collaborative (ATGC) of the Trans-Omics for Precision Medicine (TOPMed) program. <i>PLoS ONE</i> , 2020 , 15, e0242364	3.7	2
14	Patterns and determinants of exhaled nitric oxide trajectories in schoolchildren over a 7-year period. <i>European Respiratory Journal</i> , 2020 , 56,	13.6	1
13	Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed <i>Cell Genomics</i> , 2022 , 2, 100084-100084		1
12	Transcriptomic and metabolomic associations with exposures to air pollutants among young adults with childhood asthma history <i>Environmental Pollution</i> , 2022 , 299, 118903	9.3	1
11	A prospective and retrospective analysis of smoking behavior changes in ever smokers with high risk for lung cancer from New Mexico and Pennsylvania. <i>International Journal of Molecular Epidemiology and Genetics</i> , 2016 , 7, 95-104	0.9	1
10	Exhaled NO: Determinants and Clinical Application in Children With Allergic Airway Disease. <i>Allergy, Asthma and Immunology Research</i> , 2016 , 8, 12	5.3	1
9	Long-term air pollution and COVID-19 mortality rates in California: Findings from the Spring/Summer and Winter surges of COVID-19. <i>Environmental Pollution</i> , 2022 , 292, 118396	9.3	1
8	Long-term exposures to air pollutants affect in children: a longitudinal study. <i>European Respiratory Journal</i> , 2021 , 58,	13.6	1
7	Plasma concentrations of lipophilic persistent organic pollutants and glucose homeostasis in youth populations <i>Environmental Research</i> , 2022 , 212, 113296	7.9	1
6	Characteristics associated with COVID-19 vaccination status among staff and faculty of a large, diverse University in Los Angeles: The Trojan Pandemic Response Initiative <i>Preventive Medicine Reports</i> , 2022 , 27, 101802	2.6	1
5	Asthma clustering methods: a literature-informed application to the childrenß health study data. <i>Journal of Asthma</i> , 2021 , 1-14	1.9	О
4	Hierarchical Bayesian estimation of covariate effects on airway and alveolar nitric oxide. <i>Scientific Reports</i> , 2021 , 11, 17180	4.9	Ο
3	The Role of Childhood Asthma in Obesity Development: A Nationwide US Multicohort Study. <i>Epidemiology</i> , 2022 , 33, 131-140	3.1	O
2	Meta-Analysis of Hodgkin Lymphoma and Asthma Genome-Wide Association Scans reveals common variants in GATA3. <i>Blood</i> , 2014 , 124, 135-135	2.2	

LIST OF PUBLICATIONS

Stem Cells in the Real World: Environmental Impacts **2015**, 485-496