João Magalhães Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6718135/publications.pdf

Version: 2024-02-01

84 papers 4,228 citations

87723 38 h-index 63 g-index

87 all docs

87 docs citations

87 times ranked

4303 citing authors

#	Article	IF	CITATIONS
1	Occurrence of microplastics in commercial fish from a natural estuarine environment. Marine Pollution Bulletin, 2018, 128, 575-584.	2.3	387
2	Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it?. Marine Pollution Bulletin, 2013, 76, 16-27.	2.3	258
3	Review and evaluation of estuarine biotic indices to assess benthic condition. Ecological Indicators, 2009, 9, 1-25.	2.6	243
4	User-friendly guide for using benthic ecological indicators in coastal and marine quality assessment. Ocean and Coastal Management, 2006, 49, 308-331.	2.0	140
5	Response of single benthic metrics and multi-metric methods to anthropogenic pressure gradients, in five distinct European coastal and transitional ecosystems. Marine Pollution Bulletin, 2011, 62, 499-513.	2.3	139
6	A biological trait approach to assess the functional composition of subtidal benthic communities in an estuarine ecosystem. Ecological Indicators, 2012, 20, 121-133.	2.6	119
7	Management of a shallow temperate estuary to control eutrophication: The effect of hydrodynamics on the system's nutrient loading. Estuarine, Coastal and Shelf Science, 2005, 65, 697-707.	0.9	112
8	Zooplankton and ichthyoplankton communities in a temperate estuary: spatial and temporal patterns. Journal of Plankton Research, 2006, 28, 297-312.	0.8	111
9	The influence of an extreme drought event in the fish community of a southern Europe temperate estuary. Estuarine, Coastal and Shelf Science, 2007, 75, 537-546.	0.9	110
10	Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia, 2013, 704, 265-278.	1.0	110
11	Evaluation of the applicability of a marine biotic index to characterize the status of estuarine ecosystems: the case of Mondego estuary (Portugal). Ecological Indicators, 2004, 4, 215-225.	2.6	109
12	Towards a DPSIR driven integration of ecological value, water uses and ecosystem services for estuarine systems. Ocean and Coastal Management, 2013, 72, 64-79.	2.0	92
13	The effect of eutrophication abatement on the bivalve Scrobicularia plana. Estuarine, Coastal and Shelf Science, 2005, 63, 261-268.	0.9	91
14	Tales from a thousand and one ways to integrate marine ecosystem components when assessing the environmental status. Frontiers in Marine Science, 2014, 1 , .	1.2	86
15	Feeding ecology, population structure and distribution of Pomatoschistus microps (KrÃ,yer, 1838) and Pomatoschistus minutus (Pallas, 1770) in a temperate estuary, Portugal. Estuarine, Coastal and Shelf Science, 2006, 66, 231-239.	0.9	85
16	Current developments on fish-based indices to assess ecological-quality status of estuaries and lagoons. Ecological Indicators, 2012, 23, 34-45.	2.6	82
17	The use of nursery areas by juvenile fish in a temperate estuary, Portugal. Hydrobiologia, 2007, 587, 281-290.	1.0	79
18	The robustness of ecological indicators to detect long-term changes in the macrobenthos of estuarine systems. Marine Environmental Research, 2009, 68, 25-36.	1.1	78

#	Article	IF	Citations
19	A benthic perspective in assessing the ecological status of estuaries: The case of the Mondego estuary (Portugal). Ecological Indicators, 2008, 8, 404-416.	2.6	74
20	Quality assessment of benthic macroinvertebrates under the scope of WFD using BAT, the Benthic Assessment Tool. Marine Pollution Bulletin, 2009, 58, 1477-1486.	2.3	66
21	Ecological quality assessment of transitional waters based on fish assemblages in Portuguese estuaries: The Estuarine Fish Assessment Index (EFAI). Ecological Indicators, 2012, 19, 144-153.	2.6	64
22	Spatial distribution of subtidal Nematoda communities along the salinity gradient in southern European estuaries. Acta Oecologica, 2009, 35, 287-300.	0.5	62
23	The Response of Estuarine Macrobenthic Communities to Natural- and Human-Induced Changes: Dynamics and Ecological Quality. Estuaries and Coasts, 2010, 33, 1327-1339.	1.0	60
24	Development of an Angiosperm Quality Assessment Index (AQuA-Index) for ecological quality evaluation of Portuguese water bodies—A multi-metric approach. Ecological Indicators, 2013, 25, 141-148.	2.6	59
25	Estuarine colonization, population structure and nursery functioning for 0-group sea bass (Dicentrarchus labrax), flounder (Platichthys flesus) and sole (Solea solea) in a mesotidal temperate estuary. Journal of Applied Ichthyology, 2008, 24, 229-237.	0.3	58
26	Potential Nitrification and Denitrification on Different Surfaces in a Constructed Treatment Wetland. Journal of Environmental Quality, 2003, 32, 2414-2420.	1.0	56
27	Marine Macroalgae Assessment Tool (MarMAT) for intertidal rocky shores. Quality assessment under the scope of the European Water Framework Directive. Ecological Indicators, 2012, 19, 39-47.	2.6	51
28	Do nematode and macrofauna assemblages provide similar ecological assessment information?. Ecological Indicators, 2012, 14, 124-137.	2.6	50
29	Biology, population dynamics and secondary production of the green crab Carcinus maenas (L.) in a temperate estuary. Estuarine, Coastal and Shelf Science, 2005, 65, 43-52.	0.9	48
30	Indicator-Based Assessment of Marine Biological Diversity–Lessons from 10 Case Studies across the European Seas. Frontiers in Marine Science, 2016, 3, .	1.2	48
31	Phosphorous dynamics in a temperate intertidal estuary. Estuarine, Coastal and Shelf Science, 2004, 61, 101-109.	0.9	45
32	Assessing estuarine quality under the ecosystem services scope: Ecological and socioeconomic aspects. Ecological Complexity, 2010, 7, 389-402.	1.4	44
33	Defining phytoplankton class boundaries in Portuguese transitional waters: An evaluation of the ecological quality status according to the Water Framework Directive. Ecological Indicators, 2012, 19, 5-14.	2.6	43
34	The fish assemblage of the Mondego estuary: composition, structure and trends over the past two decades. Hydrobiologia, 2007, 587, 269-279.	1.0	41
35	Modelling nutrient mass balance in a temperate meso-tidal estuary: Implications for management. Estuarine, Coastal and Shelf Science, 2008, 76, 175-185.	0.9	41
36	Ecological indices tracking distinct impacts along disturbance-recovery gradients in a temperate NE Atlantic Estuary – Guidance on reference values. Estuarine, Coastal and Shelf Science, 2008, 80, 130-140.	0.9	41

#	Article	IF	Citations
37	Salinity as the major factor affecting Scirpus maritimus annual dynamics. Aquatic Botany, 2003, 77, 111-120.	0.8	39
38	Coastal waters classification based on physical attributes along the NE Atlantic region. An approach for rocky macroalgae potential distribution. Estuarine, Coastal and Shelf Science, 2012, 112, 105-114.	0.9	38
39	Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). Journal of the Marine Biological Association of the United Kingdom, 2009, 89, 1529-1540.	0.4	35
40	Natural variability and reference conditions: setting type-specific classification boundaries for lagoon macroinvertebrates in the Mediterranean and Black Seas. Hydrobiologia, 2013, 704, 325-345.	1.0	34
41	Significant variations in the productivity of green macroalgae in a mesotidal estuary: Implications to the nutrient loading of the system and the adjacent coastal area. Marine Pollution Bulletin, 2007, 54, 678-690.	2.3	32
42	Response of intertidal macrobenthic communities to long term human induced changes in the Eo estuary (Asturias, Spain): Implications for environmental management. Marine Environmental Research, 2008, 66, 288-299.	1.1	31
43	The influence of mesh size in environmental quality assessment of estuarine macrobenthic communities. Ecological Indicators, 2010, 10, 1162-1173.	2.6	29
44	Ability of benthic indicators to assess ecological quality in estuaries following management. Ecological Indicators, 2012, 19, 130-143.	2.6	29
45	Population dynamics of Corbicula fluminea (Müller, 1774) in mesohaline and oligohaline habitats: Invasion success in a Southern Europe estuary. Estuarine, Coastal and Shelf Science, 2012, 112, 31-39.	0.9	29
46	Influence of benthic macroinvertebrates on the erodability of estuarine cohesive sediments: Densityand biomass-specific responses. Estuarine, Coastal and Shelf Science, 2013, 134, 80-87.	0.9	29
47	The usefulness of large body-size macroinvertebrates in the rapid ecological assessment of Mediterranean lagoons. Ecological Indicators, 2013, 29, 48-61.	2.6	29
48	Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Marine Drugs, 2020, 18, 560.	2.2	27
49	Seasonal variation in short-term survival of Zostera noltii transplants in a declining meadow in Portugal. Aquatic Botany, 2005, 82, 132-142.	0.8	25
50	The autonomous Simpatico system for real-time continuous water-quality and current velocity monitoring: examples of application in three Portuguese estuaries. Geo-Marine Letters, 2009, 29, 331-341.	0.5	25
51	Exploring the robustness of macrophyte-based classification methods to assessÂthe ecological status of coastal and transitional ecosystems under the Water Framework Directive. Hydrobiologia, 2013, 704, 279-291.	1.0	25
52	Assessment of estuarine macrobenthic assemblages and ecological quality status at a dredging site in a southern Europe estuary. Ocean and Coastal Management, 2013, 72, 80-92.	2.0	25
53	Population dynamics, distribution and secondary production of the brown shrimp <i>Crangon </i> (L.) in a southern European estuary. Latitudinal variations. Scientia Marina, 2007, 71, 451-460.	0.3	25
54	Feeding diversity index as complementary information in the assessment of ecological quality status. Ecological Indicators, 2012, 19, 73-78.	2.6	23

#	Article	IF	CITATIONS
55	Ecological reference conditions and quality states of marine macroalgae sensu Water Framework Directive: An example from the intertidal rocky shores of the Portuguese coastal waters. Ecological Indicators, 2012, 19, 24-38.	2.6	23
56	The effects of the invasive seaweed Asparagopsis armata on native rock pool communities: Evidences from experimental exclusion. Ecological Indicators, 2021, 125, 107463.	2.6	20
57	Opportunistic macroalgae metrics for transitional waters. Testing tools to assess ecological quality status in Portugal. Marine Pollution Bulletin, 2007, 54, 1887-1896.	2.3	18
58	Seagrass Quality Index (SQI), a Water Framework Directive compliant tool for the assessment of transitional and coastal intertidal areas. Ecological Indicators, 2013, 30, 130-137.	2.6	17
59	Biological validation of physical coastal waters classification along the NE Atlantic region based on rocky macroalgae distribution. Estuarine, Coastal and Shelf Science, 2014, 147, 103-112.	0.9	17
60	Response of macroalgae and macroinvertebrates to anthropogenic disturbance gradients in rocky shores. Ecological Indicators, 2016, 61, 850-864.	2.6	17
61	Intertidal zonation and latitudinal gradients on macroalgal assemblages: Species, functional groups and thallus morphology approaches. Ecological Indicators, 2017, 81, 90-103.	2.6	16
62	BIOLOGY, POPULATION DYNAMICS, AND SECONDARY PRODUCTION OF TALITRUS SALTATOR (AMPHIPODA,) Tj	ЕТО 90 0	၁ rဋ္ဌန္ဌT /Overlo
63	Ability of invertebrate indices to assess ecological condition on intertidal rocky shores. Ecological Indicators, 2016, 70, 255-268.	2.6	15
64	Do structural and functional attributes show concordant responses to disturbance? Evidence from rocky shore macroinvertebrate communities. Ecological Indicators, 2017, 75, 57-72.	2.6	15
65	Monitoring estuarine water quality using satellite imagery. The Mondego river estuary (Portugal) as a case study. Ocean and Coastal Management, 2013, 72, 13-21.	2.0	13
66	Microplastics in Juvenile Commercial Fish from an Estuarine Environment. Springer Water, 2018, , 131-135.	0.2	13
67	The importance of habitat-type for defining the reference conditions and the ecological quality status based on benthic invertebrates: The Ria Formosa coastal lagoon (Southern Portugal) case study. Ecological Indicators, 2012, 19, 61-72.	2.6	12
68	Response of intertidal macrobenthic communities and primary producers to mitigation measures in a temperate estuary. Ecological Indicators, 2013, 25, 10-22.	2.6	12
69	Marine angiosperm indices used to assess ecological status within the Water Framework Directive and South African National Water Act: Learning from differences and common issues. Ecological Indicators, 2017, 83, 192-200.	2.6	12
70	Fish communities' response to implementation of restoring measures in a highly artificialized estuary. Ecological Indicators, 2016, 67, 743-752.	2.6	11
71	Spatial and temporal dynamics of Corbicula fluminea (Muller, 1774) in relation to environmental variables in the Mondego Estuary (Portugal). Journal of Molluscan Studies, 2013, 79, 302-309.	0.4	9
72	Origin here, impact thereâ€"The need of integrated management for river basins and coastal areas. Ecological Indicators, 2017, 72, 794-802.	2.6	9

#	Article	IF	CITATIONS
73	Transitional and freshwater bioassessments: One site, two perspectives?. Marine Pollution Bulletin, 2014, 78, 153-164.	2.3	8
74	Effectiveness of two western Iberian Peninsula marine protected areas in reducing the risk of macroalgae invasion. Ecological Indicators, 2020, 108, 105705.	2.6	8
75	Effects of restoration management on the estuarine isopod Cyathura carinata: mediation by trematodes and habitat change. Marine Biology, 2007, 151, 109-118.	0.7	7
76	Robustness of the Estuarine Fish Assessment Index (EFAI) regarding water body definition criteria. Ecological Indicators, 2012, 20, 1-8.	2.6	6
77	Setting reference conditions for mesohaline and oligohaline macroinvertebrate communities sensu WFD: Helping to define achievable scenarios in basin management plans. Ecological Indicators, 2015, 56, 171-183.	2.6	6
78	Brain as a target organ of climate events: Environmental induced biochemical changes in three marine fish species. Ecological Indicators, 2018, 95, 815-824.	2.6	5
79	Addressing a gap in the Water Framework Directive implementation: Rocky shores assessment based on benthic macroinvertebrates. Ecological Indicators, 2017, 78, 489-501.	2.6	3
80	From headwaters into the estuarine zone: changes in processes and invertebrate communities in response to abiotic conditions. Aquatic Ecology, 2021, 55, 149-168.	0.7	3
81	Assessment of seasonal and spatial variations in the nutritional content of six edible marine bivalve species by the response of a set of integrated biomarkers. Ecological Indicators, 2021, 124, 107378.	2.6	2
82	Estuários., 2019,, 381-421.		2
83	The role of Spartina marÃtima and Scirpus marÃtimus to dediment pore-water profiles, and possible implications to the Mondego estuary nutrient dynamics. , 2002, , 325-338.		1
84	Replying to Domingues et al., Ecological Indicators, 24, 245–255, http://dx.doi.org/10.1016/j.ecolind.2012.06.020. Ecological Indicators, 2013, 27, 123-124.	2.6	0