
Dmitry Lukyanenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/67180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data. Communications in Nonlinear Science and Numerical Simulation, 2018, 54, 233-247.	1.7	39
2	Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data. Computers and Mathematics With Applications, 2019, 77, 1245-1254.	1.4	33
3	Blow-up for one Sobolev problem: Theoretical approach and numerical analysis. Journal of Mathematical Analysis and Applications, 2016, 442, 451-468.	0.5	30
4	Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation. Journal of Inverse and Ill-Posed Problems, 2019, 27, 745-758.	0.5	30
5	Blowâ€up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis. Mathematical Methods in the Applied Sciences, 2017, 40, 2336-2346.	1.2	26
6	Instantaneous blow-up versus local solvability for one problem of propagation of nonlinear waves in semiconductors. Journal of Mathematical Analysis and Applications, 2018, 459, 159-181.	0.5	25
7	Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front. Communications in Nonlinear Science and Numerical Simulation, 2021, 99, 105824.	1.7	25
8	On the blowâ€up phenomena for a 1â€dimensional equation of ion sound waves in a plasma: Analytical and numerical investigation. Mathematical Methods in the Applied Sciences, 2018, 41, 2906-2929.	1.2	19
9	Analytical-Numerical Approach to Describing Time-Periodic Motion of Fronts in Singularly Perturbed Reaction–Advection–Diffusion Models. Computational Mathematics and Mathematical Physics, 2019, 59, 46-58.	0.2	15
10	Recovering aerosol particle size distribution function on the set of bounded piecewise-convex functions. Inverse Problems in Science and Engineering, 2013, 21, 339-354.	1.2	13
11	Front Dynamics in an Activator-Inhibitor System of Equations. Lecture Notes in Computer Science, 2017, , 492-499.	1.0	13
12	Some features of solving an inverse backward problem for a generalized Burgers' equation. Journal of Inverse and Ill-Posed Problems, 2020, 28, 641-649.	0.5	13
13	Application of inversion methods in solving ill-posed problems for magnetic parameter identification of steel hull vessel. Journal of Inverse and Ill-Posed Problems, 2011, 18, 1013-1029.	0.5	12
14	Inverse Problem of Recovering the Initial Condition for a Nonlinear Equation of the Reaction–Diffusion–Advection Type by Data Given on the Position of a Reaction Front with a Time Delay. Mathematics, 2021, 9, 342.	1.1	12
15	Use of Asymptotics for New Dynamic Adapted Mesh Construction for Periodic Solutions with an Interior Layer of Reaction-Diffusion-Advection Equations. Lecture Notes in Computer Science, 2017, , 107-118.	1.0	12
16	Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities. Izvestiya Mathematics, 2018, 82, 283-317.	0.1	11
17	Use of asymptotic analysis for solving the inverse problem of source parameters determination of nitrogen oxide emission in the atmosphere. Inverse Problems in Science and Engineering, 2021, 29, 365-377.	1.2	11
18	The Problem of the Non-Uniqueness of the Solution to the Inverse Problem of Recovering the Symmetric States of a Bistable Medium with Data on the Position of an Autowave Front. Symmetry, 2021, 13, 860.	1.1	9

#	Article	IF	CITATIONS
19	An optimal regularization method for convolution equations on the sourcewise represented set. Journal of Inverse and Ill-Posed Problems, 2015, 23, 465-475.	0.5	8
20	Application of Asymptotic Analysis for Solving the Inverse Problem of Determining the Coefficient of Linear Amplification in Burgers' Equation. Moscow University Physics Bulletin (English Translation of) Tj ETQq	10 0.0 rgB1	[/@verlock 10
21	Analytic-Numerical Approach to Solving Singularly Perturbed Parabolic Equations with the Use of Dynamic Adapted Meshes. Modelirovanie I Analiz Informacionnyh Sistem, 2016, 23, 334-341.	0.1	8
22	Magnetic parameters inversion method with full tensor gradient data. Inverse Problems and Imaging, 2019, 13, 745-754.	0.6	8
23	Algorithms for solving inverse problems in the optics of layered media based on comparing the extrema of spectral characteristics. Computational Mathematics and Mathematical Physics, 2017, 57, 867-875.	0.2	7
24	Application of a Three-Dimensional Radiative Transfer Model to Retrieve the Species Composition of a Mixed Forest Stand from Canopy Reflected Radiation. Remote Sensing, 2018, 10, 1661.	1.8	7
25	Magnetic susceptibility inversion method with full tensor gradient data using low-temperature SQUIDs. Petroleum Science, 2019, 16, 794-807.	2.4	7
26	Asymptotic-Numerical Method for the Location and Dynamics of Internal Layers in Singular Perturbed Parabolic Problems. Lecture Notes in Computer Science, 2017, , 721-729.	1.0	7
27	Dynamically Adapted Mesh Construction for the Efficient Numerical Solution of a Singular Perturbed Reaction-diffusion-advection Equation. Modelirovanie I Analiz Informacionnyh Sistem, 2017, 24, 322-338.	0.1	7
28	Self-compensation of errors in optical coating production with monochromatic monitoring. Optics Express, 2021, 29, 44275.	1.7	7
29	Using Lagrange principle for solving two-dimensional integral equation with a positive kernel. Inverse Problems in Science and Engineering, 2016, 24, 811-831.	1.2	6
30	Raising the Accuracy of Monitoring the Optical Coating Deposition by Application of a Nonlocal Algorithm of Data Analysis. Journal of Applied and Industrial Mathematics, 2020, 14, 330-339.	0.1	6

31	Stable Method for Optical Monitoring the Deposition of Multilayer Optical Coatings. Computational Mathematics and Mathematical Physics, 2020, 60, 2056-2063.	0.2	6
32	On Some Features of the Numerical Solving of Coefficient Inverse Problems for an Equation of the Reaction-Diffusion-Advection-Type with Data on the Position of a Reaction Front. Mathematics, 2021, 9, 2894.	1.1	6
33	Analytic–Numerical Investigation of Combustion in a Nonlinear Medium. Computational Mathematics and Mathematical Physics, 2018, 58, 1499-1509.	0.2	5
34	3D surface topography imaging in SEM with improved backscattered electron detector: Arrangement and reconstruction algorithm. Ultramicroscopy, 2019, 207, 112830.	0.8	5
35	Reconstruction of Magnetic Susceptibility Using Full Magnetic Gradient Data. Computational Mathematics and Mathematical Physics, 2020, 60, 1000-1007.	0.2	5
36	Inverse Problem for an Equation of the Reaction-Diffusion-Advection Type with Data on the Position of a Reaction Front: Features of the Solution in the Case of a Nonlinear Integral Equation in a	1.1	5

Reduced Statement. Mathematics, 2021, 9, 2342.

DMITRY LUKYANENKO

#	Article	IF	CITATIONS
37	Local Solvability and Decay of the Solution of an Equation with Quadratic Noncoercive Nonlineatity. Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 2017, 10, 107-123.	0.1	5
38	Comparative Analysis of Algorithms for Solving Inverse Problems Related to Monochromatic Monitoring the Deposition of Multilayer Optical Coatings. Computational Mathematics and Mathematical Physics, 2021, 61, 1504-1510.	0.2	4
39	Recovering the Magnetic Image of Mars from Satellite Observations. Journal of Imaging, 2021, 7, 234.	1.7	4
40	Improving the Accuracy of Broad-Band Monitoring of Optical Coating Deposition. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2018, 73, 382-387.	0.1	3
41	Blowâ€up for Joseph–Egri equation: Theoretical approach and numerical analysis. Mathematical Methods in the Applied Sciences, 2020, 43, 6771-6800.	1.2	3
42	Correlation of Errors in Monochromatic Monitoring of Optical Coatings Deposition. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2020, 75, 578-584.	0.1	3
43	On Phase Correction in Tomographic Research. Journal of Applied and Industrial Mathematics, 2020, 14, 802-810.	0.1	3
44	Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction–diffusion problem. Journal of Computational and Applied Mathematics, 2022, 412, 114294.	1.1	3
45	Online Characterization Algorithms for Optical Coating Production with Broadband Monitoring. Coatings, 2018, 8, 323.	1.2	2
46	Comparison of Algorithms for Determining the Thickness of Optical Coatings Online. Computational Mathematics and Mathematical Physics, 2019, 59, 465-474.	0.2	2
47	SOME METHODS FOR SOLVING OF 3D INVERSE PROBLEM OF MAGNETOMETRY. Eurasian Journal of Mathematical and Computer Applications, 2016, 4, 4-14.	0.2	2
48	Analytical-Numerical Study of Finite-Time Blow-up of the Solution to the Initial-Boundary Value Problem for the Nonlinear Klein–Gordon Equation. Computational Mathematics and Mathematical Physics, 2020, 60, 1452-1460.	0.2	2
49	Inverse problem of determining the thickness of optical coatings layers from the data of monochromatic control. Moscow University Computational Mathematics and Cybernetics, 2015, 39, 1-5.	0.1	1
50	Reconstruction algorithm of 3D surface in scanning electron microscopy with backscattered electron detector. Journal of Inverse and Ill-Posed Problems, 2021, 29, 753-758.	0.5	1
51	Features of Numerical Reconstruction of a Boundary Condition in an Inverse Problem for a Reaction–Diffusion–Advection Equation with Data on the Position of a Reaction Front. Computational Mathematics and Mathematical Physics, 2022, 62, 441-451.	0.2	1
52	Some Features of the Asymptotic-Numerical Method for the Moving Fronts Description in Two-Dimensional Reaction-Diffusion Problems. Lecture Notes in Computer Science, 2019, , 612-620.	1.0	0
53	Blow-Up of Fronts in Burgers Equation with Nonlinear Amplification: Asymptotics and Numerical Diagnostics. Lecture Notes in Computer Science, 2019, , 72-79.	1.0	0
54	Local solvability and a priori estimates for classical solutions to an equation of Benjaminâ€Bonaâ€Mahonyâ€Bürgers type. Mathematical Methods in the Applied Sciences, 2020, 43, 9829-98	73: ²	0

		IF	CITATIONS
	IZING ALGORITHMS FOR THE DETERMINATION OF THICKNESS OF DEPOSITED LAYERS IN OPTICAL PRODUCTION. Eurasian Journal of Mathematical and Computer Applications, 2018, , 38-47.	0.2	0
56 Semicond	cs of Instant Decomposition of Solution in the Nonlinear Equation of Theory of Waves in luctors. Bulletin of the South Ural State University, Series: Mathematical Modelling, ning and Computer Software, 2019, 12, 104-113.	0.1	0
Three-Dim 57 Effect of t	nensional Scanning Electron Microscopy of Surface Topography with Consideration of the The Response Function of the Detector System. Moscow University Physics Bulletin (English) Tj ETQq1 1	00784314	rgBT /Overld

Determination of the Parameters of the First Coating Layer Using Broadband Optical Monitoring of the Deposition Process. Moscow University Physics Bulletin (English Translation of Vestnik) Tj ETQq0 0 0 rgBT /Ovedack 10 T650 617 Tc