N Veeraiah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6717920/publications.pdf Version: 2024-02-01

		38660	106150
320	8,944	50	65
papers	citations	h-index	g-index
322	322	322	2921
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Study of CaO–WO3–P2O5 glass system by dielectric properties, IR spectra and differential thermal analysis. Journal of Non-Crystalline Solids, 2002, 298, 89-98.	1.5	163
2	Optical absorption and fluorescence spectral studies of Ho3+ ions in PbO–Al2O3–B2O3 glass system. Journal of Physics and Chemistry of Solids, 2000, 61, 1567-1571.	1.9	115
3	Influence of redox behavior of copper ions on dielectric and spectroscopic properties of Li2O–MoO3–B2O3: CuO glass system. Solid State Sciences, 2009, 11, 578-587.	1.5	115
4	Characterization and Physical Properties of PbO–As2O3 Glasses Containing Molybdenum Ions. Journal of Solid State Chemistry, 2002, 166, 104-117.	1.4	98
5	Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system. Journal of Luminescence, 2008, 128, 1791-1798.	1.5	94
6	Spectroscopic studies of titanium ions in PbO–Sb2O3–As2O3 glass system. Optics Communications, 2004, 235, 341-349.	1.0	90
7	Structural investigations on PbO–Sb ₂ O ₃ –B ₂ O ₃ ?coO glass ceramics by means of spectroscopic and dielectric studies. Journal of Physics Condensed Matter, 2009, 21, 245104.	0.7	90
8	Structural influence of aluminium, gallium and indium metal oxides by means of dielectric and spectroscopic properties of CaO–Sb2O3–B2O3 glass system. Journal of Alloys and Compounds, 2007, 438, 41-51.	2.8	84
9	Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses. Journal of Alloys and Compounds, 2013, 557, 209-217.	2.8	84
10	Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2–WO3–TeO2 glasses. Journal of Alloys and Compounds, 2010, 508, 278-291.	2.8	83
11	Influence of Al3+ ions on luminescence efficiency of Eu3+ ions in barium boro-phosphate glasses. Journal of Non-Crystalline Solids, 2015, 419, 75-81.	1.5	83
12	Spectroscopic and magnetic studies of manganese ions in ZnO–Sb2O3–B2O3 glass system. Journal of Physics and Chemistry of Solids, 2006, 67, 789-795.	1.9	80
13	The structural influence of chromium ions in lead gallium phosphate glasses by means of spectroscopic studies. Optical Materials, 2007, 30, 357-363.	1.7	80
14	Photostimulated optical effects and some related features of CuO mixed Li2O–Nb2O5–ZrO2–SiO2 glass ceramics. Ceramics International, 2011, 37, 2763-2779.	2.3	80
15	Valence and coordination of chromium ions in ZnO-Sb2O3-B2O3glass system by means of spectroscopic and dielectric relaxation studies. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 816-832.	0.8	79
16	Characterization and physical properties of Li2O–CaF2–P2O5 glass ceramics with Cr2O3 as a nucleating agent—Physical properties. Journal of Solid State Chemistry, 2007, 180, 2747-2755.	1.4	77
17	Spectroscopic and dielectric studies on MnO doped PbO–Nb2O5–P2O5 glass system. Journal of Alloys and Compounds, 2008, 458, 66-76.	2.8	75
18	Physical properties of ZnF2–As2O3–TeO2 glasses doped with Cr3+ ions. Physica B: Condensed Matter, 2002, 324, 127-141.	1.3	74

#	Article	IF	CITATIONS
19	Study on some physical properties of Li2O–MO–B2O3: V2O5 glasses. Physica B: Condensed Matter, 2004, 348, 256-271.	1.3	74
20	Nickel ion as a structural probe in PbO–Bi2O3–B2O3 glass system by means of spectroscopic and dielectric studies. Physica B: Condensed Matter, 2008, 403, 3751-3759.	1.3	73
21	Influence of aluminum ions on fluorescent spectra and upconversion in codoped CaF2–Al2O3–P2O5–SiO2:Ho3+ and Er3+ glass system. Journal of Applied Physics, 2010, 108, .	1.1	72
22	The role of iron ions on the structure and certain physical properties of PbO–As2O3 glasses. Journal of Physics and Chemistry of Solids, 2002, 63, 705-717.	1.9	71
23	Dielectric and spectroscopic properties of PbO-Nb2O5-P2O5:V2O5glass system. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2083-2102.	0.8	69
24	The role of titanium ions on structural, dielectric and optical properties of Li2O–MgO–B2O3 glass system. Materials Chemistry and Physics, 2004, 87, 357-369.	2.0	68
25	The structural investigations of PbO–P2O5–Sb2O3 glasses with MoO3 as additive by means of dielectric, spectroscopic and magnetic studies. Physica B: Condensed Matter, 2007, 393, 61-72.	1.3	66
26	Dielectric dispersion in ZnF2-Bi2O3-TeO2 glass system. Journal of Materials Science, 2001, 36, 5625-5632.	1.7	65
27	Studies on the influence of V2O5 on dielectric relaxation and ac conduction phenomena of Li2O–MgO–B2O3 glass system. Journal of Alloys and Compounds, 2004, 368, 25-37.	2.8	65
28	Spectroscopic, magnetic and dielectric investigations of BaO-Ga2O3-P2O5 glasses doped by Cu ions. Physica Status Solidi A, 2005, 202, 2812-2828.	1.7	65
29	Optical and thermoluminescence properties of R2O–RF–B2O3 glass systems doped with MnO. Journal of Non-Crystalline Solids, 2005, 351, 3752-3759.	1.5	65
30	Optical absorption and photoluminescence properties of Eu3+-doped ZnF2–PbO–TeO2 glasses. Journal of Materials Science, 1998, 33, 2659-2662.	1.7	63
31	Spectroscopic properties and luminescence behaviour of europium doped lithium borate glasses. Physica B: Condensed Matter, 2014, 454, 148-156.	1.3	62
32	Spectroscopic features of Pr3+, Nd3+, Sm3+ and Er3+ ions in Li2O–MO (Nb2O5, MoO3 and WO3)–B2O3 glass systems. Physica B: Condensed Matter, 2008, 403, 2542-2556.	1.3	61
33	Studies on influence of aluminium ions on the bioactivity of B2O3–SiO2–P2O5–Na2O–CaO glass system by means of spectroscopic studies. Applied Surface Science, 2013, 287, 46-53.	3.1	61
34	Influence of WO3 on some physical properties of MO–Sb2O3–B2O3 (M=Ca, Pb and Zn) glass system. Journal of Alloys and Compounds, 2009, 485, 876-886.	2.8	60
35	Dielectric dispersion in Li2O–MoO3–B2O3 glass system doped with V2O5. Journal of Alloys and Compounds, 2008, 464, 472-482.	2.8	58
36	Specific features of photo and thermoluminescence of Tb3+ ions in BaO–M2O3 (M=Ga, Al, In)–P2O5 glasses. Journal of Luminescence, 2007, 127, 637-644.	1.5	57

#	Article	IF	CITATIONS
37	Effect of alkali-earth modifier ion on electrical, dielectric and spectroscopic properties of Fe2O3 doped Na2SO4MOP2O5 glass system. Journal of Alloys and Compounds, 2014, 604, 352-362.	2.8	57
38	Role of titanium valence states in optical and electronic features of PbO–Sb2O3–B2O3:TiO2 glass alloys. Journal of Alloys and Compounds, 2009, 482, 283-297.	2.8	56
39	Study on various physical properties of PbO–As2O3 glasses containing manganese ions. Journal of Alloys and Compounds, 2001, 327, 52-65.	2.8	55
40	Dielectric dispersion in the PbO–MoO3–B2O3 glass system. Solid State Communications, 2004, 132, 235-240.	0.9	55
41	Nickel ion—A structural probe in BaO–Al2O3–P2O5 glass system by means of dielectric, spectroscopic and magnetic studies. Journal of Physics and Chemistry of Solids, 2006, 67, 2478-2488.	1.9	55
42	Dielectric, magnetic and spectroscopic properties of Li2O–WO3–P2O5 glass system with Ag2O as additive. Materials Chemistry and Physics, 2008, 111, 283-292.	2.0	55
43	Role of nickel ion coordination on spectroscopic and dielectric properties of ZnF2–As2O3–TeO2:NiO glass system. Journal of Non-Crystalline Solids, 2011, 357, 1193-1202.	1.5	55
44	De-quenching influence of aluminum ions on Y/B ratio of Dy3+ ions in lead silicate glass matrix. Journal of Alloys and Compounds, 2013, 575, 375-381.	2.8	55
45	Dielectric dispersion and certain other physical properties of PbO–Ga2O3–P2O5 glass system. Materials Letters, 2002, 56, 880-888.	1.3	54
46	Optical absorption and fluorescence properties of Er3+ ion in MO–WO3–P2O5 glasses. Journal of Physics and Chemistry of Solids, 2003, 64, 1027-1035.	1.9	53
47	Role of Al2O3 in upconversion and NIR emission in Tm3+ and Er3+ codoped calcium fluoro phosphorous silicate glass system. Journal of Luminescence, 2011, 131, 1443-1452.	1.5	53
48	Dielectric relaxation and a.c. conduction phenomena of PbO–PbF2–B2O3 glasses doped with FeO. Journal of Physics and Chemistry of Solids, 2006, 67, 2263-2274.	1.9	52
49	Fluorescence features of Sm3+ ions in Na2SO4–MO–P2O5 glass system—Influence of modifier oxide. Journal of Luminescence, 2011, 131, 212-217.	1.5	52
50	Electrical and spectroscopic properties of Fe2O3 doped Na2SO4–BaO–P2O5 glass system. Journal of Non-Crystalline Solids, 2012, 358, 3255-3267.	1.5	52
51	Dielectric properties of ZnF2-PbO-TeO2 glasses. Journal of Physics and Chemistry of Solids, 1998, 59, 91-97.	1.9	51
52	Structural role of In2O3 in PbO–P2O5–As2O3 glass system by means of spectroscopic and dielectric studies. Journal of Alloys and Compounds, 2007, 431, 303-312.	2.8	51
53	Spectroscopic properties of copper ions in ZnO–ZnF2–B2O3 glasses. Optical Materials, 2007, 29, 1467-1474.	1.7	51
54	Microstructural, dielectric and spectroscopic properties of Li2O–Nb2O5–ZrO2–SiO2 glass system crystallized with V2O5. Journal of Physics and Chemistry of Solids, 2011, 72, 190-200.	1.9	50

#	Article	IF	CITATIONS
55	Role of manganese ions on the stability of ZnF2–P2O5–TeO2 glass system by the study of dielectric dispersion and some other physical properties. Journal of Physics and Chemistry of Solids, 2003, 64, 133-146.	1.9	49
56	Studies on dielectric properties of LiF–Sb2O3–B2O3:CuO glass system. Materials Chemistry and Physics, 2005, 91, 381-390.	2.0	49
57	Role of Al coordination in barium phosphate glasses on the emission features of Ho3+ ion in the visible and IR spectral ranges. Journal of Luminescence, 2010, 130, 498-506.	1.5	47
58	Thermoluminescence studies on Li2O–CaF2–B2O3 glasses doped with manganese ions. Materials Letters, 2002, 57, 403-408.	1.3	46
59	Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications. Journal of Luminescence, 2017, 182, 312-322.	1.5	46
60	The improved glass-forming ability and some physical properties of PbO–Sb2O3:Cr2O3 glasses with As2O3 as additive. Physica Status Solidi A, 2003, 199, 389-402.	1.7	44
61	Structural features of MoO3 doped sodium sulpho borophosphate glasses by means of spectroscopic and dielectric dispersion studies. Journal of Molecular Structure, 2012, 1016, 39-46.	1.8	44
62	Influence of Crystallization on the Luminescence Characteristics of Pr ³⁺ lons in PbO–Sb ₂ O ₃ –B ₂ O ₃ Glass System. Journal of the American Ceramic Society, 2010, 93, 2004-2011.	1.9	43
63	Dielectric and Spectroscopic properties of CuO doped multi-component Li2OPbOB2O3SiO2Bi2O3Al2O3 glass system. Journal of Non-Crystalline Solids, 2013, 370, 21-30.	1.5	43
64	Study on certain physical properties of R2O–CaF2–B2O3:Cr2O3 glasses. Journal of Alloys and Compounds, 2002, 339, 54-64.	2.8	42
65	Optical absorption and thermoluminescence properties of ZnF2–MO–TeO2 (MO=As2O3, Bi2O3 and) Tj ET(2q110.7	84314 rgBT /(
66	The structural role of chromium ions on the improvement of insulating character of ZnO–ZnF2–B2O3 glass system by means of dielectric, spectroscopic and magnetic properties. Physica B: Condensed Matter, 2006, 373, 297-305.	1.3	42
67	Induced crystallization and physical properties of Li2O–CaF2–P2O5:TiO2 glass system. Journal of Alloys and Compounds, 2008, 450, 486-493.	2.8	42
68	The role of coordination and valance states of tungsten ions on some physical properties of Li2O–Al2O3–ZrO2–SiO2 glass system. Journal of Non-Crystalline Solids, 2011, 357, 3094-3102.	1.5	42
69	Influence of valence and coordination of manganese ions on spectral and dielectric features of Na2SO4–B2O3–P2O5 glasses. Journal of Non-Crystalline Solids, 2012, 358, 1278-1286.	1.5	42
70	Dielectric Dispersion in CuO Doped ZnF2–PbO–TeO2 Glasses. Journal De Physique III, 1997, 7, 951-961.	0.3	41
71	The role of As2O3 on the stability and some physical properties of PbO–Sb2O3 glasses. Journal of Physics and Chemistry of Solids, 2004, 65, 1153-1164.	1.9	41
72	Electrical, dielectric and spectroscopic studies on MnO doped Lil–AgI–B2O3 glasses. Journal of Applied Physics, 2012, 111, .	1.1	41

#	Article	IF	CITATIONS
73	Influence of modifier oxide on emission features of Dy 3+ ion in Pb 3 O 4 ‒ZnO‒P 2 O 5 glasses. Optical Materials, 2016, 60, 594-600.	1.7	41
74	Optical properties of Sm3+ doped strontium bismuth borosilicate glasses for laser applications. Optical Materials, 2019, 89, 68-79.	1.7	41
75	The structural role of tungsten ions in PbO–Sb2O3–As2O3 glass-system by means of spectroscopic investigations. Materials Chemistry and Physics, 2006, 100, 211-216.	2.0	40
76	Influence of copper ions on thermoluminescence characteristics of CaF2–B2O3–P2O5 glass system. Ceramics International, 2014, 40, 3707-3713.	2.3	40
77	Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses. Materials Science and Engineering C, 2015, 57, 240-248.	3.8	40
78	Luminescence properties of Sm3+ ions doped heavy metal oxide tellurite-tungstate-antimonate glasses. Ceramics International, 2017, 43, 16467-16473.	2.3	40
79	Dielectric and spectroscopic investigations of lithium aluminium zirconium silicate glasses mixed with TiO ₂ . Philosophical Magazine, 2011, 91, 958-980.	0.7	39
80	Luminescence properties of Pr3+ doped Li2O–MO–B2O3 glasses. Journal of Luminescence, 2015, 161, 147-153.	1.5	39
81	Dielectric dispersion and ac conduction phenomena of Li2Oâ^'Sb2O3â^'PbOâ^'GeO2:Cr2O3 glass system. Materials Science in Semiconductor Processing, 2015, 35, 96-108.	1.9	39
82	Effect of ZrO2 on the bioactive properties of B2O3–SiO2–P2O5–Na2O–CaO glass system. Journal of Non-Crystalline Solids, 2016, 452, 23-29.	1.5	39
83	Studies on dielectric dispersion, relaxation kinetics and a.c. conductivity of Na2O CuO SiO2 glasses mixed with Bi2O3-Influence of redox behavior of copper ions. Journal of Alloys and Compounds, 2017, 696, 1260-1268.	2.8	39
84	Spectroscopic and dielectric properties of ZnF2–As2O3–TeO2 glass system doped with V2O5. Physica B: Condensed Matter, 2009, 404, 1450-1464.	1.3	38
85	Influence of yttrium ions on the emission transfer features of Ce3+/Yb3+ co-doped lithium silicate glasses. Optical Materials, 2012, 34, 1381-1388.	1.7	38
86	Amplification of green emission of Ho3+ ions in lead silicate glasses by sensitizing with Bi3+ ions. Journal of Alloys and Compounds, 2016, 683, 114-122.	2.8	38
87	Infrared spectral investigations on ZnF2-PbO-TeO2 glasses. Journal of Materials Science Letters, 1997, 16, 1816-1818.	0.5	37
88	Dielectric properties of NaF-B2O3 glasses doped with certain transition metal ions. Bulletin of Materials Science, 2000, 23, 285-293.	0.8	37
89	Spectroscopic features of Ni2+ ion in PbO–Bi2O3–SiO2 glass system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 263-271.	2.0	37
90	Spectroscopic and structural properties of Cr 3+ ions in lead niobium germanosilicate glasses. Journal of Luminescence, 2017, 183, 17-25.	1.5	37

#	Article	IF	CITATIONS
91	Induced crystallization and physical properties of Li2O–CaF2–P2O5:TiO2 glass system. Journal of Alloys and Compounds, 2008, 450, 477-485.	2.8	36
92	Spectroscopic investigations on ZnF2–MO–TeO2 (MO=ZnO, CdO and PbO) glasses doped with chromium ions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 90, 97-113.	1.1	35
93	Spectroscopic and dielectric studies on PbO–MoO ₃ –B ₂ O ₃ glasses incorporating small concentrations of TiO ₂ . Philosophical Magazine, 2007, 87, 5763-5787.	0.7	35
94	Influence of modifier oxides on some physical properties of antimony borate glass system doped with V2O5. Materials Chemistry and Physics, 2010, 120, 89-97.	2.0	35
95	Fe concentration dependent transport properties of Lil–Agl–B2O3 glass system. Journal of Alloys and Compounds, 2010, 507, 391-398.	2.8	35
96	Spectroscopy features of Pr3+ and Er3+ ions in Li2O–ZrO2–SiO2 glass matrices mixed with some sesquioxides. Journal of Alloys and Compounds, 2011, 509, 9230-9239.	2.8	35
97	Emission characteristics of Dy3+ ions in lead antimony borate glasses. Applied Physics B: Lasers and Optics, 2012, 108, 455-461.	1.1	35
98	Optical and structural investigation of Dy3+–Nd3+ co-doped in magnesium lead borosilicate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 744-751.	2.0	35
99	Dielectric properties of LiF single crystals X-ray irradiated under d.c. fields. Journal of Materials Science, 1987, 22, 2017-2022.	1.7	34
100	glasses doped with Er3+ ions. Journal of Luminescence, 2004, 109, 193-205.	1.5	33
101	Optical absorption and thermoluminescence studies on LiF–Sb2O3–B2O3 glasses doped with Ni2+ ions. Journal of Luminescence, 2006, 117, 53-60.	1.5	33
102	Dc field induced optical effects in ZnF2–PbO–TeO2:TiO2 glass ceramics. Ceramics International, 2012, 38, 2551-2562.	2.3	33
103	The role of ligand coordination on the spectral features of Yb3+ ions in lead aluminum silicate glasses. Journal of Molecular Structure, 2012, 1007, 185-190.	1.8	33
104	Influence of ligand coordination of cobalt ions on structural properties of ZnO–ZnF2–B2O3 glass system by means of spectroscopic studies. Physica B: Condensed Matter, 2012, 407, 712-718.	1.3	33
105	Influence of Sb2O3 on tellurite based glasses for photonic applications. Journal of Alloys and Compounds, 2016, 687, 898-905.	2.8	33
106	Influence of alumina on photoluminescence and thermoluminescence characteristics of Gd 3+ doped barium borophosphate glasses. Journal of Luminescence, 2016, 179, 44-49.	1.5	33
107	Thermoluminescence study of MnO doped borophosphate glass samples for radiation dosimetry. Journal of Non-Crystalline Solids, 2013, 368, 40-44.	1.5	32
108	Studies on Î ³ -ray induced structural changes in Nd3+ doped lead alumino silicate glasses by means of thermoluminescence for dosimetric applications in high dose ranges. Journal of Alloys and Compounds, 2014, 616, 257-262.	2.8	32

#	Article	IF	CITATIONS
109	Acoustic investigations on PbO-Al2O3-B2O3 glasses doped with certain rare earth ions. Bulletin of Materials Science, 2001, 24, 63-68.	0.8	31
110	Luminescence quenching by manganese ions in MO–CaF2–B2O3 glasses. Optical Materials, 2003, 22, 295-302.	1.7	31
111	Spectroscopic properties of MO-WO3-P2O5: Ho3+glasses. EPJ Applied Physics, 2004, 26, 169-176.	0.3	31
112	Piezoelectric and elastic properties of ZnF2–PbO–TeO2: TiO2 glass ceramics. Journal of Non-Crystalline Solids, 2012, 358, 702-710.	1.5	31
113	Role of modifier oxide in emission spectra and kinetics of Er–Ho codoped Na2SO4–MO–P2O5 glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 86, 472-480.	2.0	31
114	Influence of Al declustering on the photoluminescent properties of Pr3+ ions in PbO–SiO2 glasses. Journal of Non-Crystalline Solids, 2013, 362, 201-206.	1.5	31
115	Influence of Al3+ ions on self up-conversion in Ho3+ doped lead silicate glasses. Optical Materials, 2014, 36, 1189-1196.	1.7	31
116	The Effect of Tungsten Ions on the Structure of PbO-As2O3 Glasses. Physica Status Solidi A, 2002, 191, 370-386.	1.7	30
117	Dielectric properties of PbO–P2O5–As2O3 glass system with Ga2O3 as additive. Solid State Communications, 2008, 145, 401-406.	0.9	30
118	Low temperature dielectric dispersion and electrical conductivity studies on Fe2O3 mixed lithium yttrium silicate glasses. Journal of Non-Crystalline Solids, 2012, 358, 3175-3186.	1.5	30
119	The structural influence of aluminium ions on emission characteristics of Sm3+ ions in lead aluminium silicate glass system. Materials Research Bulletin, 2012, 47, 267-273.	2.7	30
120	Optical and structural investigation of Sm3+–Nd3+ co-doped in magnesium lead borosilicate glasses. Journal of Physics and Chemistry of Solids, 2013, 74, 410-417.	1.9	30
121	The structural and warm light emission properties of Sm3+/Tb3+ doubly doped strontium bismuth borosilicate glasses for LED applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 220, 117097.	2.0	30
122	Dielectric spectra of Li2O–CaF2–P2O5 glasses doped by silver ions. Physica B: Condensed Matter, 2007, 396, 29-40.	1.3	29
123	Study on the influence of TiO2 on the insulating strength of ZnO–ZnF2–B2O3 glasses by means of dielectric properties. Solid State Communications, 2006, 139, 64-69.	0.9	28
124	NiOâ€induced crystallization and optical characteristics of Li ₂ O–CaF ₂ –P ₂ O ₅ glass system. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 177-187.	0.8	28
125	Physical and spectroscopic properties of multi-component Na2O–PbO–Bi2O3–SiO2 glass ceramics with Cr2O3 as nucleating agent. Optical Materials, 2015, 47, 315-322.	1.7	28
126	Enhancement of the red emission of Eu3+ by Bi3+ sensitizers in yttrium alumino bismuth borosilicate glasses. Journal of Molecular Structure, 2019, 1176, 133-148.	1.8	28

#	Article	IF	CITATIONS
127	Optical absorption, fluorescence and thermoluminescence properties of ZnF2–MO–TeO2 (MO=ZnO,) Tj ETQ	q110.78	4314 rgBT /(
128	Electrical and spectroscopic properties of LiF–Bi2O3–P2O5:TiO2 glass system. Materials Chemistry and Physics, 2011, 126, 58-68.	2.0	27
129	Influence of Cr3+ions on the structure and certain physical properties of PbO-As2O3glasses. EPJ Applied Physics, 2001, 16, 11-22.	0.3	27
130	Composition dependence of electrical properties of ZnF2-MO-TeO2 glasses. Bulletin of Materials Science, 2001, 24, 421-429.	0.8	26
131	Fe2O3-induced crystallization and the physical properties of lead arsenate glass system. Journal of Alloys and Compounds, 2009, 468, 466-472.	2.8	26
132	Gamma ray induced changes on vibrational spectroscopic properties of strontium alumino-borosilicate glasses. Vibrational Spectroscopy, 2013, 69, 49-56.	1.2	26
133	The de-clustering influence of aluminum ions on the emission features of Nd3+ ions in PbO–SiO2 glasses. Optics Communications, 2013, 298-299, 135-140.	1.0	26
134	Physical properties of ZnF2–PbO–TeO2:TiO2 glass ceramics–Part III dielectric dispersion and ac conduction phenomena. Ceramics International, 2014, 40, 5989-5996.	2.3	26
135	Structural and electrical properties of zinc tantalum borate glass ceramic. Ceramics International, 2016, 42, 17269-17282.	2.3	26
136	Influence of red lead on the intensity of green and orange emissions of Sm3+ and Ho3+ co-doped ZnO–SrO–P2O5 glass system. Journal of Alloys and Compounds, 2017, 695, 668-681.	2.8	26
137	Thermoluminescence studies on PbO–Sb2O3–As2O3 glasses doped with iron ions. Optical Materials, 2007, 29, 566-572.	1.7	25
138	Optically induced effects in nano-crystallized PbO–Sb2O3–B2O3:Pr2O3 glasses. Journal of Alloys and Compounds, 2010, 500, 9-15.	2.8	25
139	Insulating and Other Physical Properties of CoOâ€Doped Zinc Oxyfluorideâ€Borate Glass eramics. Journal of the American Ceramic Society, 2015, 98, 413-422.	1.9	25
140	Bioactive properties of CuO doped CaF 2 ‒CaO‒B 2 O 3 ‒P 2 O 5 ‒MO(M=Ba, Sr, Zn, Mg) glasses. Cerami International, 2017, 43, 4335-4343.	cs 2.3	25
141	Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: Impact of Ti4+on physico-mechanical and in vitro bioactivity. Ceramics International, 2019, 45, 23715-23727.	2.3	25
142	Effect of DC Field and X-Ray Irradiation on Dielectric Properties of ZnF2–PbO–TeO2 Glasses. Physica Status Solidi A, 1995, 147, 601-610.	1.7	24
143	Magnetic properties of PbO–Sb2O3–As2O3 glasses containing iron ions. Journal of Magnetism and Magnetic Materials, 2004, 284, 363-368.	1.0	24
144	Molybdenum ion as a structural probe in PbO-Sb2O3-B2O3glass system by means of dielectric and spectroscopic investigations. EPJ Applied Physics, 2007, 37, 203-211.	0.3	24

#	Article	IF	CITATIONS
145	Influence of modifier oxide on dielectric dispersion and a.c. conduction phenomena of Li2O–Sb2O3–GeO2 glass system. Journal of Non-Crystalline Solids, 2014, 386, 67-75.	1.5	24
146	Effect of tin ions on enhancing the intensity of narrow luminescence line at 311Ânm of Gd3+ ions in Li2OPbOP2O5 glass system. Optical Materials, 2016, 57, 39-44.	1.7	24
147	Luminescence emission features of Nd 3+ ions in PbO–Sb 2 O 3 glasses mixed with Sc 2 O 3 /Y 2 O 3 /HfO 2. Optical Materials, 2017, 69, 181-189.	1.7	24
148	Investigation on silver doped B2O3 – SiO2 – P2O5 – Na2O – CaO bioglass system for biomedical applications. Journal of Alloys and Compounds, 2018, 734, 318-328.	2.8	24
149	Influence of silver ion concentration on dielectric characteristics of Li2O-Nb2O5-P2O5 glasses. Journal of Alloys and Compounds, 2019, 773, 654-665.	2.8	24
150	ZnO incorporated high phosphate bioactive glasses for guided bone regeneration implants: enhancement of inÂvitro bioactivity and antibacterial activity. Journal of Materials Research and Technology, 2021, 15, 633-646.	2.6	24
151	Spectroscopic characterization, conductivity and relaxation anomalies in the Li2O–MgO–B2O3 glass system: Effect of nickel ions. Journal of Physics and Chemistry of Solids, 2008, 69, 2813-2826.	1.9	23
152	Luminescence spectroscopy of Ti ions in Li2O–CaF2–P2O5 glass ceramics. Journal of Luminescence, 2008, 128, 631-634.	1.5	23
153	Spectral and fluorescent kinetics features of Nd3+ ion in Nb2O5, Ta2O5 and La2O3 mixed lithium zirconium silicate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 81, 498-503.	2.0	23
154	Fluorescence spectroscopic studies of Mn2+ ions in SrO–Al2O3–B2O3–SiO2 glass system. Optical Materials, 2013, 35, 402-406.	1.7	23
155	Structural and physical characteristics of Au ₂ O ₃ â€doped sodium antimonate glasses – Part I. Journal of the American Ceramic Society, 2019, 102, 1628-1641.	1.9	23
156	Dielectric properties of LiF-B2O3 glasses doped with certain rare earth ions. Bulletin of Materials Science, 1998, 21, 341-347.	0.8	22
157	Acoustic Investigations on LiF–B2O3 Glasses Doped With Certain Rare-Earth Ions. Journal of Materials Science Letters, 1999, 18, 475-478.	0.5	22
158	Influence of Ag2O on some physical properties of LiF–TiO2–P2O5 glass system. Journal of Alloys and Compounds, 2009, 479, 549-556.	2.8	22
159	Emission features of Ho3+ ion in Nb2O5, Ta2O5 and La2O3 mixed Li2O–ZrO2–SiO2 glasses. Physica B: Condensed Matter, 2011, 406, 3592-3598.	1.3	22
160	Spectroscopic features of manganese doped tellurite borate glass ceramics. Journal of Physics and Chemistry of Solids, 2013, 74, 229-235.	1.9	22
161	Influence of induced structural changes on thermoluminescence characteristics of γ-ray irradiated PbO–Al2O3–SiO2: Dy3+ glasses. Journal of Molecular Structure, 2014, 1073, 174-180.	1.8	22
162	Enhancement of orange emission of Co 2+ ions with Bi 3+ ions in lead silicate glasses. Journal of Luminescence, 2016, 172, 47-52.	1.5	22

#	Article	IF	CITATIONS
163	Insulating characteristics of zinc niobium borate glass eramics. Journal of the American Ceramic Society, 2017, 100, 4066-4080.	1.9	22
164	Selective Detection of Trinitrophenol by Amphiphilic Dimethylaminopyridine-Appended Zn(II)phthalocyanines at the Near-Infrared Region. ACS Omega, 2019, 4, 6218-6228.	1.6	22
165	Influence of Chromium Ions on the Dielectric Properties of the PbO-Ga ₂ O ₃ -P ₂ O ₅ Glass System. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 315-323.	0.7	21
166	Environment of Fe3+ ion and its influence on dielectric and spectroscopic properties of Pbo–Nb2O5–P2O5 glasses. Physica B: Condensed Matter, 2007, 389, 213-226.	1.3	21
167	Fluorescence features of Tm3+ ions in PbO–Sb2O3–B2O3 glass ceramics. Physica B: Condensed Matter, 2010, 405, 1872-1880.	1.3	21
168	The role of vanadium valence states and coordination on electrical conduction in lithium iodide borate glasses mixed with small concentration of silver iodide. Journal of Non-Crystalline Solids, 2011, 357, 3538-3547.	1.5	21
169	Influence of Y2O3, Sc2O3 and HfO2 dopants on green emission of Er3+ ions in PbO–Sb2O3 glasses. Journal of Luminescence, 2017, 192, 443-451.	1.5	21
170	Spectroscopic, dielectric dispersion and dc conductivity studies of Sb2O3doped lithium fluoro borophosphate glasses mixed with small concentrations of NiO. Journal of Alloys and Compounds, 2018, 752, 179-190.	2.8	21
171	Characterization, optical and luminescence features of cobalt ions in multi-component PbO Al2O3TeO2GeO2SiO2 glass ceramics. Optical Materials, 2019, 88, 289-298.	1.7	21
172	Dielectric dispersion and impedance spectroscopy of NiO doped Li2SO4–MgO–P2O5 glass system. Journal of Alloys and Compounds, 2020, 824, 153907.	2.8	21
173	Influence of titanium ions on optical properties of AF–PbO– glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 95, 373-386.	1.1	20
174	Features of the local structural disorder in Li2O–CaF2–P2O5 glass–ceramics with Cr2O3 as nucleating agent. Physica B: Condensed Matter, 2008, 403, 702-710.	1.3	20
175	Cobalt ion as a structural probe in PbO–As2O3 glass ceramics. Solid State Communications, 2010, 150, 9-13.	0.9	20
176	Spectroscopical splitting of Cu ion energy levels in magnesium lead fluoro silicate glasses. Physica B: Condensed Matter, 2012, 407, 593-597.	1.3	20
177	Optical and dielectric features of zinc oxy fluoro borate glass ceramics with TiO2 as crystallizing agent. Ceramics International, 2014, 40, 2249-2260.	2.3	20
178	Influence of modifier oxide on Spectroscopic properties of Ho3+: V4+ co-doped Na2O–SiO2–ZrO2 glasses. Journal of Alloys and Compounds, 2014, 586, 159-168.	2.8	20
179	Optical absorption and photoluminescence properties of Pr3+-doped ZnF2î—,PbOî—,TeO2 glasses. Journal of Luminescence, 1997, 75, 57-62.	1.5	19
180	Influence of aluminium ions on physical properties of PbO-P2O5-As2O3glasses. EPJ Applied Physics, 2006, 34, 97-106.	0.3	19

#	Article	IF	CITATIONS
181	Electrical conduction and other related properties of silver ion doped LiF–V2O5–P2O5 glass system. Physica B: Condensed Matter, 2010, 405, 668-677.	1.3	19
182	Polaronic behavior of MnO doped LiI-AgI-B2O3 glass. Journal of Applied Physics, 2012, 112, 073705.	1.1	19
183	Spectroscopic and dielectric response of zinc bismuth phosphate glasses as a function of chromium content. Materials Research Bulletin, 2014, 57, 58-66.	2.7	19
184	Transport and spectroscopic properties of nickel ions in ZnO B2O3P2O5 glass system. Optik, 2016, 127, 2920-2923.	1.4	19
185	Concentration dependence of luminescence efficiency of Dy ³ ⁺ ions in strontium zinc phosphate glasses mixed with Pb ₃ O ₄ . Luminescence, 2017, 32, 71-77.	1.5	19
186	Physical characteristics of PbOâ^'ZrO 2 â^'SiO 2 :TiO 2 glass ceramics embedded with Pb 2 Ti 2 O 6 cubic pyrochlore crystal phase: Part-I electrical properties. Journal of Alloys and Compounds, 2017, 712, 672-686.	2.8	19
187	Influence of Mn2+ sensitizers on orange-red emission of Pr3+ ions in BaO–Al2O3–B2O3–SiO2 glass system. Journal of Luminescence, 2017, 190, 379-385.	1.5	19
188	Luminescence characteristics of Er3+ ions in ZnO-Ta2O5/Nb2O5/ZrO2-B2O3 glass system- A case study of energy transfer from ZnO to Er3+ ions. Optical Materials, 2018, 86, 87-94.	1.7	19
189	Influence of alkyl chains on fluoranthene ensembles towards fluorescence-based detection of 2,4,6-trinitrophenol. Applied Surface Science, 2019, 481, 1018-1027.	3.1	19
190	Ag concentration dependent transport properties of LiF–MoO3–P2O5 glasses. Physica B: Condensed Matter, 2009, 404, 3748-3755.	1.3	18
191	Influence of local structural disorders on spectroscopic properties of multi-component CaF2–Bi2O3–P2O5–B2O3 glass ceramics with Cr2O3 as nucleating agent. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 281-288.	2.0	18
192	Analysis of red mud doped Bi2O3-B2O3-BaO glasses for application as glass solder in radiation shield repair using MCNPX simulation. Ceramics International, 2019, 45, 7619-7626.	2.3	18
193	Influence of gold ions on visible and NIR luminescence features of Er3+ ions in lead boroselenate glass ceramics. Journal of Luminescence, 2020, 226, 117481.	1.5	18
194	Dielectric characteristics, dipolar relaxation dynamics and ac conductivity of CuO added lithium sulpho-phosphate glass system. Journal of Non-Crystalline Solids, 2020, 543, 120157.	1.5	18
195	Dielectric dispersion in PbO–Sb2O3–As2O3:V2O5 glasses. Journal of Physics and Chemistry of Solids, 2005, 66, 954-962.	1.9	17
196	Studies on optimizing sesquioxide contents to enhance luminescence efficiency of Pr3+ ions in PbOâ^'PbF2â^'B2O3 glass system. Journal of Molecular Structure, 2014, 1073, 164-173.	1.8	17
197	γ-Ray induced thermoluminescence characteristics of the PbO–Al2O3–SiO2:Pr3+glass system. Journal of Luminescence, 2015, 161, 417-421.	1.5	17
198	Induced crystallization and the physical properties of PbO–Sb2O3–As2O3: MoO3 glass system. Journal of Physics and Chemistry of Solids, 2009, 70, 669-679.	1.9	16

#	Article	IF	CITATIONS
199	Copper ion as a structural probe in lead bismuth arsenate glasses by means of dielectric and spectroscopic studies. Physica B: Condensed Matter, 2010, 405, 4092-4100.	1.3	16
200	Optical absorption, ESR, FT-IR spectral studies of iron ions in lead oxyfluoro silicate glasses. Journal of Molecular Structure, 2012, 1021, 7-12.	1.8	16
201	Spectroscopic properties of Sm3+ and V4+ ions in Na2O–SiO2–ZrO2 glasses. Journal of Molecular Structure, 2013, 1054-1055, 339-348.	1.8	16
202	J-O parameters versus photoluminescence characteristics of 40Li2O-4 MO (MO Nb2O5, MoO3 and) Tj ETQqO 0 () rgBT /Ov 1.4	verlock 10 Tf
203	On identifying efficient modifier oxide in improving bioactivity of Fe2O3 doped calcium oxy fluoro borophosphate glasses. Journal of Alloys and Compounds, 2017, 692, 219-226.	2.8	16
204	Structural and dielectric features of silver doped sodium antimonate glass ceramics. Journal of Alloys and Compounds, 2019, 791, 278-295.	2.8	16
205	Structural and physical characteristics of Au ₂ O ₃ â€doped sodium antimonate glasses – Part II electrical characteristics. Journal of the American Ceramic Society, 2019, 102, 1921-1941.	1.9	16
206	Optical absorption and self activated upconversion fluorescence spectra of Tm3+ ions in antimony borate glass systems. Solid State Communications, 2008, 146, 441-445.	0.9	15
207	Spectroscopic and dielectric properties of crystallized PbO–Sb2O3–As2O3:NiO glass system. Journal of Alloys and Compounds, 2009, 488, 400-408.	2.8	15
208	Dielectric dispersion and spectroscopic investigations on Na2SO4–B2O3–P2O5 glasses mixed with low concentrations of TiO2. Journal of Alloys and Compounds, 2012, 515, 134-142.	2.8	15
209	Influence of valence states and co-ordination of cobalt ions on dielectric properties of PbO–Bi2O3–As2O3:CoO glass system. Physica B: Condensed Matter, 2012, 407, 581-588.	1.3	15
210	Manifestation of up-conversion in Yb3+/Tm3+ doped Li2O–Y2O3–SiO2 glass system. Applied Physics B: Lasers and Optics, 2013, 110, 335-344.	1.1	15
211	Thermoluminescence features of aluminaâ€mixed borophosphate glasses with Tb 3+ ions for dosimetric applications. International Journal of Applied Glass Science, 2017, 8, 188-195.	1.0	15
212	Copper ion as a structural probe in PbO–CaF2–P2O5 glass system by means of spectroscopic and dielectric studies. Journal of Alloys and Compounds, 2009, 472, 489-496.	2.8	14

213	Influence of sesquioxides on fluorescence emission of Yb3+ ions in PbO–PbF2–B2O3 glass system. Journal of Non-Crystalline Solids, 2013, 378, 265-272.	1.5	14
214	Positron annihilation exploration of voids in zinc zirconium borate glass ceramics entrenched with ZnZrO3 perovskite crystal phases. Journal of the European Ceramic Society, 2018, 38, 2010-2016.	2.8	14
215	Influence of ZrO2 Addition on Structural and Biological Activity of Phosphate Glasses for Bone Regeneration. Materials, 2020, 13, 4058.	1.3	14
216	Elastic properties of ZnF2-PbO-TeO2 glasses doped with certain rare earth ions. Bulletin of Materials Science, 1997, 20, 667-675.	0.8	13

13

#	Article	IF	CITATIONS
217	Investigation on spectral features of tungsten ions in PbO–Bi2O3–As2O3 glass matrix. Physica B: Condensed Matter, 2011, 406, 4494-4499.	1.3	13
218	Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions. Journal of Radiation Research and Applied Sciences, 2014, 7, 519-525.	0.7	13
219	Enrichment of orange emission of Er3+ ion with Sn4+ ion as sensitizer in lithium lead phosphate glass system. Optical Materials, 2015, 48, 51-58.	1.7	13
220	Improving green emission of Tb ³ ⁺ ions in BaOâ€B ₂ O ₃ â€P ₂ O ₅ glasses by means of Al ³ ⁺ ions. Luminescence, 2016, 31, 1358-1363.	1.5	13
221	Physical characteristics of PbOâ^'ZrO2â^'SiO2:TiO2 glass ceramics embedded with Pb2Ti2O6 cubic pyrochlore crystal phase: Part-IlÂpiezo-optical acoustic and elastic properties. Journal of Alloys and Compounds, 2017, 725, 318-325.	2.8	13
222	Dielectric features, relaxation dynamics and a.c. conductivity studies on Ag+ mixed lead arsenate glass ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 1153-1172.	1.1	13
223	Fluorescence studies of Yb3+ ions in lead antimony borate glass—Influence of crystallization. Journal of Alloys and Compounds, 2010, 492, 706-711.	2.8	12
224	The energy transfer efficiency from Yb 3+ to Nd 3+ in SrO Pb 3 O 4 ZnO P 2 O 5 glass system-Influence of lead ions. Journal of Luminescence, 2017, 187, 281-289.	1.5	12
225	Optical Absorption and Photoluminescence Properties of Tb3+-doped KF-B2O3 Glasses. Journal of Materials Science Letters, 1999, 18, 55-57.	0.5	11
226	Optical and magnetic properties of PbO–Sb2O3–As2O3 glasses containing vanadium ions. Materials Letters, 2005, 59, 539-545.	1.3	11
227	Spectroscopic and dielectric studies of meso-tetrakis(p-sulfonatophenyl) porphyrin doped hybrid borate glasses. Journal of Alloys and Compounds, 2011, 509, 2797-2803.	2.8	11
228	The influence of In2O3 on electrical characteristics of iron mixed Li2O–PbO–B2O3–SiO2–Bi2O3 multi-component glass system. Ceramics International, 2014, 40, 8311-8322.	2.3	11
229	Luminescence and spectroscopic properties of ZnF2–MO–TeO2 glasses doped with Ho3+ ions. Journal of Molecular Structure, 2015, 1093, 166-171.	1.8	11
230	Third order nonlinear optical effects of ZnO–ZrO2–B2O3 glass ceramics embedded with ZnZrO3 perovskite crystal phases. Journal of Materials Science: Materials in Electronics, 2017, 28, 16403-16414.	1.1	11
231	Dielectric dispersion, dipolar relaxation and a.c. conduction phenomena of NiO doped lead bismuth silicate glass system. Journal of Non-Crystalline Solids, 2018, 500, 460-467.	1.5	11
232	Influence of strontium on structure, bioactivity and corrosion behaviour of B2O3–SiO2–Na2O–CaO glasses-investigation by spectroscopic methods. Optical Materials, 2018, 84, 292-300.	1.7	11
233	Energy transfer (Ce3+→ Sm3+) influence on PL emission of Ce3+/Sm3+ co-doped barium gallium borosilicate glasses. Physica B: Condensed Matter, 2019, 559, 8-16.	1.3	11
234	Influence of iron ions on dielectric properties of the PbO–Bi ₂ O ₃ –B ₂ O ₃ glass system. Philosophical Magazine, 2008, 88, 1601-1614.	0.7	10

#	Article	IF	CITATIONS
235	Influence of Ga3+ ions on spectroscopic and dielectric features of multi component lithium lead boro bismuth silicate glasses doped with manganese ions. Materials Research Bulletin, 2013, 48, 4618-4627.	2.7	10
236	Dielectric and spectroscopic features of ZnO–ZnF2–B2O3:MoO3 glass ceramic—a possible material for plasma display panels. Journal of Materials Science: Materials in Electronics, 2014, 25, 4902-4915.	1.1	10
237	Infrared luminescence and thermoluminescence of lithium borate glasses doped with Sm3+ ions. Materials Science-Poland, 2015, 33, 144-151.	0.4	10
238	InÂvitro investigations on CoO doped CaF2CaO B2O3P2O5â^'MO bioactive glasses by means of spectroscopic studies. Optical Materials, 2017, 73, 628-637.	1.7	10
239	Laser stimulated third harmonic generation studies in ZnO–Ta 2 O 5 –B 2 O 3 glass ceramics entrenched with Zn 3 Ta 2 O 8 crystal phases. Optical Materials, 2018, 76, 90-96.	1.7	10
240	InÂvitro degradation studies on bioactive calcium fluoroborophosphate glasses mixed with some modifier oxides-influence of therapeutically active vanadium ions. Materials Chemistry and Physics, 2018, 205, 376-390.	2.0	10
241	Spectroscopic and thermal analysis of lead-free multipurpose radiation shielding glasses. Ceramics International, 2019, 45, 5332-5338.	2.3	10
242	Effect of Al3+ ions substitution in novel zinc phosphate glasses on formation of HAp layer for bone graft applications. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110591.	2.5	10
243	A critical study on the magnetic properties of ultrafine cobalt ferrite nanoparticles synthesized by polyethylene glycol assisted sol–gel method. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	10
244	Third-order nonlinear optical features of zirconia-added lead silicate glass ceramics embedded with Pb2Fe2O5 perovskite crystal phases and role of Fe ions. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	10
245	Multifunctional hydantoins: recent advances in optoelectronics and medicinal drugs from Academia to the chemical industry. Journal of Materials Chemistry C, 2021, 9, 16341-16377.	2.7	10
246	Dielectric properties of LiF single crystals. Journal of Materials Science, 1981, 16, 2571-2574.	1.7	9
247	Enhanced stokes shift of S2→S0 emission and structural investigations of Sn(IV)Porphyrins doped hybrid borate glasses. Journal of Alloys and Compounds, 2012, 513, 318-323.	2.8	9
248	Influence of sesquioxides on luminescence features of Nd3+ ions in PbO–PbF2–B2O3 glass system. Physica B: Condensed Matter, 2015, 457, 117-125.	1.3	9
249	Structural influence of Bi3+ ions on physical properties of Na2CuSiO4 glasses photoluminescence and thermoluminescence studies. Journal of Non-Crystalline Solids, 2016, 449, 50-54.	1.5	9
250	Influence of Î ³ -ray-induced effects on dielectric dispersion of CuO-doped calcium fluoroborophosphate glass system. Ionics, 2016, 22, 1625-1634.	1.2	9
251	Influence of tungsten ion valence states on electrical characteristics of quaternary lithium-antimony-lead-germanate glasses. Journal of Physics and Chemistry of Solids, 2017, 107, 108-117.	1.9	9
252	Synthesis and in vitro characterization of cerium oxide mixed calcium oxy fluoro borophosphate bioactive glasses by means of spectroscopic studies. Journal of Non-Crystalline Solids, 2018, 498, 422-429.	1.5	9

#	Article	IF	CITATIONS
253	Optical absorption and photoluminescence properties of anadium ions in â€~lithium-tungsten-borate' oxide glasses. Materials Today: Proceedings, 2018, 5, 26290-26297.	0.9	9
254	Free volume estimation in Au and Ag mixed sodium antimonate glass ceramics by means of positron annihilation. Physica B: Condensed Matter, 2019, 570, 266-273.	1.3	9
255	Laser-stimulated piezo-optical and third harmonic generation studies for Na2O–Sb2O3 glass ceramics-influence of gold ions. Journal of Materials Science: Materials in Electronics, 2019, 30, 3782-3791.	1.1	9
256	Polaronic conduction and dielectric relaxation dynamics in V2O5 added lead bismuth silicate glass system. Journal of Non-Crystalline Solids, 2020, 528, 119746.	1.5	9
257	Optimized NIR and MIR emission properties of Tm3+/Ho3+ ions in lead sulfo phosphate glasses. Infrared Physics and Technology, 2021, 113, 103617.	1.3	9
258	The impact of Nb2O5 on in-vitro bioactivity and antibacterial activity of CaF2–CaO–B2O3–P2O5–SrO glass system. Ceramics International, 2021, 47, 28328-28337.	2.3	9
259	The role of gold metallic particles on improving green and NIR emissions of Ho3+ ions in non-conventional SeO2 based glass ceramics. Journal of Non-Crystalline Solids, 2022, 576, 121240.	1.5	9
260	Investigations on electrical characteristics of (PbO) 30 (CuO) x (As 2 O 3) (70-x) glass ceramics. Ceramics International, 2017, 43, 6385-6396.	2.3	8
261	Influence of Bi3+ ions on low temperature D.C. conductivity of Na2SiCuO4 glasses. Ionics, 2017, 23, 655-664.	1.2	8
262	Studies on structural characterization and near white light emission through energy transfer between Ce3+ and Tb3+ in barium gallium borosilicate glasses. Journal of Molecular Structure, 2019, 1190, 184-195.	1.8	8
263	Synthesis and studies on magnetic properties of single-phase cobalt ferrite nanoparticles: influence of content of chelating agent. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	8
264	Investigations on Physico-Mechanical and Spectral Studies of Zn2+ Doped P2O5-Based Bioglass System. Journal of Composites Science, 2020, 4, 129.	1.4	8
265	Tuning the π-Conjugation of 2-Thiohydantoins toward a Rigorously Defined Detection of Volatile Organic Compounds by Surface Photovoltage. ACS Applied Electronic Materials, 2022, 4, 2313-2325.	2.0	8
266	Effect of X-ray irradiation on dielectric properties of ZnF2-PbO-TeO2 glasses. Journal of Materials Science Letters, 1994, 13, 1558-1560.	0.5	7
267	Molybdenum ion: a structural probe in lithium–antimony–germanate glass system by means of dielectric and spectroscopic studies. Journal of Materials Science, 2014, 49, 6203-6216.	1.7	7
268	Influence of Nd3+ ions on TL characteristics of Li2O-MO-B2O3 (MOÂ=ÂZnO, CaO, CdO) glass system. Journal of Theoretical and Applied Physics, 2015, 9, 119-125.	1.4	7
269	Thermal Luminescence of <scp>H</scp> o ₂ <scp>O</scp> ₃ â€ <scp>P</scp> b <scp>O</scp> â€ <scp>A</scp> <su Glasses Exposed to Gamma Radiation. International Journal of Applied Glass Science, 2015, 6, 128-136.</su 	b> 2 @/sub:	>≺ scp>O<!--</b-->sc
270	Influence of Bi3+ ions on optical and luminescence properties of multi- component P2O5─PbO─Ga2O3 ─Pr2O3 glass system. Optical Materials, 2018, 77, 178-186.	1.7	7

#	Article	IF	CITATIONS
271	Influence of cobalt ions on dielectric features and a.c. conductivity of lead bismuth silicate glasses. Physica B: Condensed Matter, 2019, 566, 136-145.	1.3	7
272	Impact of silver ions on dielectric properties and conductivity of lithium silicate glass system mixed with red lead. Journal of Non-Crystalline Solids, 2022, 588, 121641.	1.5	7
273	Microstructural, electrical, magnetic and spectroscopic properties of PbOSb ₂ O ₃ As ₂ O ₃ :MnO glass ceramics. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 80-91.	0.8	6
274	An in-vitro bioactive, structural and degradation studies on B2O3–SiO2–P2O5–Na2O–CaO glass system incorporated with chromium ions. Materials Today: Proceedings, 2018, 5, 26280-26289.	0.9	6
275	Influence of some thermally resistant transition metal oxides on emission features of Pr3+ ions in zinc borate glasses. Journal of Non-Crystalline Solids, 2019, 503-504, 243-251.	1.5	6
276	Estimation of concentration of nano-sized voids ingrained in CuO doped lithium sulphophosphate amorphous system using positron annihilation spectroscopy. Optical Materials, 2020, 109, 110314.	1.7	6
277	Emission features of Er3+ ions in an exotic SeO2 based glass system. Journal of Non-Crystalline Solids, 2021, 556, 120558.	1.5	6
278	In-vitro bioactivity and antibacterial properties of CaF2‒CaO‒B2O3‒P2O5–SrO glass system-influence of Ta2O5. Journal of Non-Crystalline Solids, 2021, 566, 120881.	1.5	6
279	Spectroscopic investigations on PbO–As ₂ O ₃ glasses crystallized with TiO ₂ . Philosophical Magazine, 2009, 89, 2255-2270.	0.7	5
280	Violet-blue emission characteristics of Pr3+ ions codoped with Ti4+ ions in lead arsenate glass system. Journal of Luminescence, 2018, 199, 416-422.	1.5	5
281	Photo-induced non-linear optical studies on gallium alkali borate glasses doped with TiO2. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	5
282	Structural and physical properties of MnO mixed lead zirconium silicate glass ceramics: Dielectric relaxation spectra and conduction phenomena. Journal of Non-Crystalline Solids, 2019, 521, 119529.	1.5	5
283	Correlation studies between physical properties and concentration of voids entrenched in V2O5 mixed lead bismuth silicate glass system by means of positron annihilation spectroscopy. Vacuum, 2020, 173, 109171.	1.6	5
284	Second harmonic generation and spectroscopic characteristics of TiO2 doped Li2O–Al2O3–B2O3 glass matrix. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	5
285	Studies on near infrared emission of Yb3+ ions in a SeO2 based glass system. Physica B: Condensed Matter, 2021, 606, 412827.	1.3	5
286	Dielectric dispersion in aluminium doped zinc—manganese ferrites. Physica Status Solidi A, 1994, 144, 235-241.	1.7	4
287	Environment effect on the optical and photophysical investigation of Al(III)Porphyrins doped hybrid borate glasses. Materials Chemistry and Physics, 2011, 130, 134-139.	2.0	4
288	Influence of titanium ions on spectroscopic properties of TeO ₂ ‧b ₂ O ₃ â€8 ₂ O ₃ 2C ₂ B ₂ C ₂ B ₂ C ₂ C ₂ B ₂ C ₂ C ₂ B _{C₂C₂B_{C₂C₂B_{C₂C_{C₂B_{C<s< td=""><td>0.8</td><td>4</td></s<>}}}	0.8	4

#	Article	IF	CITATIONS
289	Influence of tin ions on AC conductivity and dielectric features of Li2O–PbO–P2O5 glass system. Ionics, 2015, 21, 3051-3063.	1.2	4
290	Effect of modifier on the silver based fast ion conducting glasses for solid state batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 8446-8455.	1.1	4
291	Influence of nickel ion concentration on the free volume defects entrenched in an alkali sulphophosphate glass system by means of positron annihilation characterization technique. Journal of Non-Crystalline Solids, 2020, 547, 120315.	1.5	4
292	Exploration of nano sized defects in Fe2O3 doped lead zirconium silicate glass ceramics by using positron annihilation lifetime spectroscopy. Ceramics International, 2021, 47, 21785-21790.	2.3	4
293	On Some Optical Properties of NaF Single Crystals Xâ€Ray Irradiated under DC Fields. Physica Status Solidi (B): Basic Research, 1987, 142, 587-593.	0.7	3
294	AC CONDUCTION PHENOMENON OF Li2O–WO3–B2O3 GLASSES DOPED WITH V2O5. Functional Materials Letters, 2013, 06, 1350032.	0.7	3
295	Nd 3+ â€Doped Lead Boro Selenate Glass: A New Efficient System for Nearâ€Infrared 1.06 μm Laser Emissic Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000602.	'n Ò.8	3
296	Influence of NiO doping on elastic properties of Li2SO4-MgO-P2O5 glass system-Investigation by means of acoustic wave propagation. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
297	Dielectric Relaxation Dynamics and Polaronic Tunneling Conduction Mechanism of Electrical Conductivity of Fe ₂ 0 ₃ â€Doped PbO–ZrO ₂ –SiO ₂ Class Ceramics. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100071.	0.8	3
298	Study on the influence of gelation promoter on the structural and magnetic properties of cobalt ferrite nanoparticles developed through sol-gel method. Journal of Sol-Gel Science and Technology, 2021, 100, 310-325.	1.1	3
299	Characterization and coloration efficiency studies using cyclicvoltammetry and chronocoulometric methods on TiO2 doped WO3 nanocrystalline thin films. Optik, 2022, 249, 168282.	1.4	3
300	Influence of Ga3+ ions on the structure and in vitro bioactivity of B2O3–SiO2–Na2O–CaO glass system. Materials Today: Proceedings, 2018, 5, 26245-26254.	0.9	2
301	Energy band structure and optical band gap calculations of AgSbO3 photo-catalystic pyrochlore crystal phase embedded in Ag2O doped sodium antimonate glass ceramics. Optik, 2020, 206, 164345.	1.4	2
302	Investigations on the influence CuO doping on elastic properties of Li2SO4–MgO–P2O5 glass system by means of acoustic wave propagation. Solid State Communications, 2021, 330, 114270.	0.9	2
303	Are the phosphorus-rich Na ₂ O–CaO–B ₂ O ₃ –SiO ₂ –P ₂ O _{5< glasses bioactive and what is an influence of doping with manganese oxide?. Materials Science-Poland, 2017. 35. 760-766.}	/sub> 0.4	2
304	Influence of SeO2 on in vitro bioactivity and antibacterial activity of CaF2–CaO–B2O3–P2O5–SrO glass system. Materials Chemistry and Physics, 2022, 278, 125653.	2.0	2
305	Investigation of the effect of Au2O3 dopant on elastic properties of PbO-B2O3-SeO2: Er2O3 glass ceramics by ultrasonic techniques. Journal of Non-Crystalline Solids, 2022, 583, 121465.	1.5	2
306	Study of gamma ray induced defect centers in MnO doped calcium fluoro borophosphate glasses by means of EPR spectroscopy. Materials Letters, 2016, 167, 284-287.	1.3	1

#	Article	IF	CITATIONS
307	Spectroscopic properties of PbOâ^'Sb2O3â^'SiO2: MnO glass system. Materials Today: Proceedings, 2018, 5, 26397-26404.	0.9	1
308	Effect of modifier on battery studies of silver-based FIC glasses. Ionics, 2019, 25, 215-219.	1.2	1
309	(INVITED) Positron annihilation spectroscopy and third harmonic generation studies on MnO mixed lead zirconium silicate glass ceramics. Optical Materials: X, 2019, 1, 100024.	0.3	1
310	Influence of Ni ion site occupancy on laser induced third harmonic generation (THG) studies in Li2SO4–MgO–P2O5 amorphous system. Ceramics International, 2021, 47, 25249-25254.	2.3	1
311	Nonlinear optical birefringence in Li2SO4-MgO-P2O5 amorphous system -influence of Cu ions. Journal of Non-Crystalline Solids, 2021, 572, 121111.	1.5	1
312	The anisotropic photorefractive effect in lithium sulfo-phosphate glass system doped with nickel ions. Optical Materials, 2022, 123, 111858.	1.7	1
313	Optical absorption and thermoluminescence of LiF single crystals X-ray irradiated at elevated temperatures under high d.c. fields. Journal of Materials Science Letters, 1989, 8, 107-109.	0.5	0
314	MnO – induced crystallization and optical characteristics of PbO-Sb2O3-B2O3glass system. IOP Conference Series: Materials Science and Engineering, 2009, 2, 012027.	0.3	0
315	Fluorescence Features of Samarium Ion in PbO-B2O3-SiO2-Al2O3Class System. Transactions of the Indian Ceramic Society, 2013, 72, 13-17.	0.4	0
316	The influence of Ag2O on the dielectric properties of LiF–CaO–B2O3 glasses. Journal of Commonwealth Law and Legal Education, 2015, 56, 271-277.	0.2	0
317	Third harmonic generation studies of 1.06Âμm Nd:YAG laser beam in Li2SO4–MgO–P2O5 glass system-influence of CuO. Optical Materials, 2021, 118, 111277.	1.7	0
318	Spectroscopic features of chromium ions in Li2O-BaO-B2O3 glasses. Materials Today: Proceedings, 2021, 43, 3034-3037.	0.9	0
319	Role of molybdenum ions in lead zinc phosphate glass system by means of dielectric studies. Materials Science-Poland, 2018, 36, 623-629.	0.4	0
320	Dielectric dispersion impedance spectroscopy and polaron tunneling phenomenon in Au2O3 mixed PbO-B2O3-SeO2:Er2O3 glass ceramics. Journal of Alloys and Compounds, 2022, 904, 164069.	2.8	0