Makoto Mark Taketo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6717711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate. Nature Communications, 2022, 13, 633.	12.8	28
2	Decomposing a deterministic path to mesenchymal niche formation by two intersecting morphogen gradients. Developmental Cell, 2022, 57, 1053-1067.e5.	7.0	16
3	Concurrent Activation of Kras and Canonical Wnt Signaling Induces Premalignant Lesions That Progress to Extrahepatic Biliary Cancer in Mice. Cancer Research, 2022, 82, 1803-1817.	0.9	7
4	Synthetic lethality between MyD88 loss and mutations in Wnt/β-catenin pathway in intestinal tumor epithelial cells. Oncogene, 2021, 40, 408-420.	5.9	11
5	Wnt/β-Catenin Signaling Promotes Differentiation of Ischemia-Activated Adult Neural Stem/Progenitor Cells to Neuronal Precursors. Frontiers in Neuroscience, 2021, 15, 628983.	2.8	23
6	Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection. Immunity, 2021, 54, 1200-1218.e9.	14.3	68
7	The therapeutic potential of multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-derived iPS cells. Communications Biology, 2021, 4, 694.	4.4	18
8	Imbalanced Activation of Wnt-/β-Catenin-Signaling in Liver Endothelium Alters Normal Sinusoidal Differentiation. Frontiers in Physiology, 2021, 12, 722394.	2.8	4
9	Dual blockade of macropinocytosis and asparagine bioavailability shows synergistic anti-tumor effects on KRAS-mutant colorectal cancer. Cancer Letters, 2021, 522, 129-141.	7.2	12
10	Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation. Nature Communications, 2021, 12, 6963.	12.8	14
11	β-Catenin Role in the Vulnerability/Resilience to Stress-Related Disorders Is Associated to Changes in the Serotonergic System. Molecular Neurobiology, 2020, 57, 1704-1715.	4.0	4
12	Resident mesenchymal vascular progenitors modulate adaptive angiogenesis and pulmonary remodeling via regulation of canonical Wnt signaling. FASEB Journal, 2020, 34, 10267-10285.	0.5	16
13	Chemosensitivity of Patient-Derived Cancer Stem Cells Identifies Colorectal Cancer Patients with Potential Benefit from FGFR Inhibitor Therapy. Cancers, 2020, 12, 2010.	3.7	9
14	Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21598-21608.	7.1	46
15	Beta-Catenin Causes Adrenal Hyperplasia by Blocking Zonal Transdifferentiation. Cell Reports, 2020, 31, 107524.	6.4	47
16	Disruption of CCR1-mediated myeloid cell accumulation suppresses colorectal cancer progression in mice. Cancer Letters, 2020, 487, 53-62.	7.2	15
17	Wnt/ \hat{l}^2 -catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene, 2020, 39, 5282-5291.	5.9	30
18	Canonical Wnt/β-catenin activity and differential epigenetic marks direct sexually dimorphic regulation of <i>Irx3</i> and <i>Irx5</i> in developing gonads. Development (Cambridge), 2020, 147, .	2.5	8

ΜΑΚΟΤΟ ΜΑΓΚ ΤΑΚΕΤΟ

#	Article	IF	CITATIONS
19	Tubular \hat{I}^2 -catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight, 2020, 5, .	5.0	19
20	βâ€catenin signaling modulates the tempo of dendritic growth of adultâ€born hippocampal neurons. EMBO Journal, 2020, 39, e104472.	7.8	21
21	β-Catenin/TCF4 Complex-Mediated Induction of the NRF3 (NFE2L3) Gene in Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 3344.	4.1	25
22	Stromal iodothyronine deiodinase 2 (<scp>DIO</scp> 2) promotes the growth of intestinal tumors in <i>Apc</i> ^{Δ716} mutant mice. Cancer Science, 2019, 110, 2520-2528.	3.9	17
23	A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease. Nature Communications, 2019, 10, 5023.	12.8	51
24	Lineage tracing and targeting of IL17RB ⁺ tuft cell-like human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12996-13005.	7.1	49
25	Constitutive Activation of β-Catenin in Conventional Dendritic Cells Increases the Insulin Reserve to Ameliorate the Development of Type 2 Diabetes in Mice. Diabetes, 2019, 68, 1473-1484.	0.6	12
26	Mesothelial mobilization in the developing lung and heart differs in timing, quantity, and pathway dependency. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L767-L783.	2.9	11
27	Edar is a downstream target of beta-catenin and drives collagen accumulation in the mouse prostate. Biology Open, 2019, 8, .	1.2	1
28	Ovarian insufficiency and CTNNB1 mutations drive malignant transformation of endometrial hyperplasia with altered PTEN/PI3K activities. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4528-4537.	7.1	19
29	Wnt/β-catenin signaling contributes to articular cartilage homeostasis through lubricin induction in the superficial zone. Arthritis Research and Therapy, 2019, 21, 247.	3.5	38
30	MicroRNA-9-5p-CDX2 Axis: A Useful Prognostic Biomarker for Patients with Stage II/III Colorectal Cancer. Cancers, 2019, 11, 1891.	3.7	9
31	Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis. Developmental Cell, 2019, 48, 17-31.e6.	7.0	90
32	Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. ELife, 2019, 8, .	6.0	60
33	Dissecting Wnt Signaling for Melanocyte Regulation during Wound Healing. Journal of Investigative Dermatology, 2018, 138, 1591-1600.	0.7	35
34	Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing. Nature Communications, 2018, 9, 4903.	12.8	182
35	TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development (Cambridge), 2018, 145, .	2.5	32
36	A Chemosensitivity Study of Colorectal Cancer Using Xenografts of Patient-Derived Tumor-Initiating Cells. Molecular Cancer Therapeutics, 2018, 17, 2187-2196.	4.1	17

ΜΑΚΟΤΟ MARK TAKETO

#	Article	IF	CITATIONS
37	Canonical Wnt signaling regulates patterning, differentiation and nucleogenesis in mouse hypothalamus and prethalamus. Developmental Biology, 2018, 442, 236-248.	2.0	29
38	SMAD4 Suppresses WNT-Driven Dedifferentiation and Oncogenesis in the Differentiated Gut Epithelium. Cancer Research, 2018, 78, 4878-4890.	0.9	56
39	Transgenic mice that accept Luciferase―or GFPâ€expressing syngeneic tumor cells at high efficiencies. Genes To Cells, 2018, 23, 580-589.	1.2	15
40	Mitophagy in Intestinal Epithelial Cells Triggers Adaptive Immunity during Tumorigenesis. Cell, 2018, 174, 88-101.e16.	28.9	93
41	Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine. Nature Communications, 2018, 9, 2174.	12.8	42
42	An improved method for culturing patient-derived colorectal cancer spheroids. Oncotarget, 2018, 9, 21950-21964.	1.8	29
43	Accurate diagnosis of mismatch repair deficiency in colorectal cancer using high-quality DNA samples from cultured stem cells. Oncotarget, 2018, 9, 37534-37548.	1.8	3
44	Beta-catenin and estrogen signaling collaborate to drive cyclin D1 expression in developing mouse prostate. Differentiation, 2017, 93, 66-71.	1.9	8
45	SHISA6 Confers Resistance to Differentiation-Promoting Wnt/β-Catenin Signaling in Mouse Spermatogenic Stem Cells. Stem Cell Reports, 2017, 8, 561-575.	4.8	79
46	Aminoâ€ŧerminal enhancer of split gene <i><scp>AES</scp></i> encodes a tumor and metastasis suppressor of prostate cancer. Cancer Science, 2017, 108, 744-752.	3.9	15
47	A Critical Role of Presynaptic Cadherin/Catenin/p140Cap Complexes in Stabilizing Spines and Functional Synapses in the Neocortex. Neuron, 2017, 94, 1155-1172.e8.	8.1	43
48	Distinct Roles of HES1 in Normal Stem Cells and Tumor Stem-like Cells of the Intestine. Cancer Research, 2017, 77, 3442-3454.	0.9	23
49	Canonical WNT Signaling Regulates the Pituitary Organizer and Pituitary Gland Formation. Endocrinology, 2017, 158, 3339-3353.	2.8	27
50	Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7697-E7706.	7.1	270
51	A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nature Medicine, 2017, 23, 1191-1202.	30.7	38
52	AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nature Cell Biology, 2017, 19, 844-855.	10.3	132
53	Blocking TGF-β and β-Catenin Epithelial Crosstalk Exacerbates CKD. Journal of the American Society of Nephrology: JASN, 2017, 28, 3490-3503.	6.1	50
54	The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis. International Journal of Molecular Sciences, 2016, 17, 643.	4.1	97

#	Article	IF	CITATIONS
55	Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity. PLoS ONE, 2016, 11, e0164714.	2.5	9
56	Expression of metastasis suppressor gene <i><scp>AES</scp></i> driven by a Yin Yang (<scp>YY</scp>) element in a CpG island promoter and transcription factor <scp>YY</scp> 2. Cancer Science, 2016, 107, 1622-1631.	3.9	17
57	Characterization of Aes nuclear foci in colorectal cancer cells. Journal of Biochemistry, 2016, 159, 133-140.	1.7	5
58	β-Catenin Activation in Muscle Progenitor Cells Regulates Tissue Repair. Cell Reports, 2016, 15, 1277-1290.	6.4	100
59	The Wnt-Myb pathway suppresses KIT expression to control the timing of salivary proacinar differentiation and duct formation. Development (Cambridge), 2016, 143, 2311-24.	2.5	32
60	Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells. Brain Research, 2016, 1651, 73-87.	2.2	12
61	An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5′Hoxd–Cli3 antagonism. Nature Communications, 2016, 7, 12903.	12.8	48
62	Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development (Cambridge), 2016, 143, 2206-2216.	2.5	17
63	Loss of SMAD4 Promotes Colorectal Cancer Progression by Accumulation of Myeloid-Derived Suppressor Cells through the CCL15–CCR1 Chemokine Axis. Clinical Cancer Research, 2016, 22, 492-501.	7.0	102
64	Identification of Aging-Associated Gene Expression Signatures That Precede Intestinal Tumorigenesis. PLoS ONE, 2016, 11, e0162300.	2.5	7
65	Antitumor activity of the MEK inhibitor trametinib on intestinal polyp formation in Apc Δ716 mice involves stromal COX â€2. Cancer Science, 2015, 106, 692-699.	3.9	9
66	Excessive Wnt/beta-catenin signaling promotes midbrain floor plate neurogenesis, but results in vacillating dopamine progenitors. Molecular and Cellular Neurosciences, 2015, 68, 131-142.	2.2	29
67	Id2 deletion attenuates Apc-deficient ileal tumor formation. Biology Open, 2015, 4, 993-1001.	1.2	4
68	In Vivo Cochlear Hair Cell Generation and Survival by Coactivation of Â-Catenin and Atoh1. Journal of Neuroscience, 2015, 35, 10786-10798.	3.6	109
69	Promotion of Colorectal Cancer Invasion and Metastasis through Activation of NOTCH–DAB1–ABL–RHOGEF Protein TRIO. Cancer Discovery, 2015, 5, 198-211.	9.4	85
70	CCR1-mediated accumulation of myeloid cells in the liver microenvironment promoting mouse colon cancer metastasis. Clinical and Experimental Metastasis, 2014, 31, 977-989.	3.3	56
71	Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear. Developmental Biology, 2014, 391, 54-65.	2.0	22
72	Distinct populations within Isl1 lineages contribute to appendicular and facial skeletogenesis through the β-catenin pathway. Developmental Biology, 2014, 387, 37-48.	2.0	15

ΜΑΚΟΤΟ MARK TAKETO

#	Article	IF	CITATIONS
73	IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells. Cell Reports, 2014, 7, 1914-1925.	6.4	22
74	The role of CXCR3 and CXCR4 in colorectal cancer metastasis. International Journal of Cancer, 2013, 132, 276-287.	5.1	119
75	Loss of SMAD4 From Colorectal Cancer Cells Promotes CCL15 Expression to Recruit CCR1+ Myeloid Cells and Facilitate Liver Metastasis. Gastroenterology, 2013, 145, 1064-1075.e11.	1.3	108
76	Roles of stromal microenvironment in colon cancer progressionÂ. Journal of Biochemistry, 2012, 151, 477-481.	1.7	14
77	Ectopic Wnt/Beta–Catenin Signaling Induces Neurogenesis in the Spinal Cord and Hindbrain Floor Plate. PLoS ONE, 2012, 7, e30266.	2.5	28
78	Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration. Cell, 2011, 145, 941-955.	28.9	263
79	Adenomatous polyposis coli heterozygous knockout mice display hypoactivity and age-dependent working memory deficits. Frontiers in Behavioral Neuroscience, 2011, 5, 85.	2.0	20
80	Suppression of Colon Cancer Metastasis by Aes through Inhibition of Notch Signaling. Cancer Cell, 2011, 19, 125-137.	16.8	183
81	Molecular mechanisms of liver metastasis. International Journal of Clinical Oncology, 2011, 16, 464-472.	2.2	27
82	Reflections on the Spread of Metastasis to Cancer Prevention. Cancer Prevention Research, 2011, 4, 324-328.	1.5	41
83	Role of bone marrow-derived cells in colon cancer: lessons from mouse model studies. Journal of Gastroenterology, 2009, 44, 93-102.	5.1	15
84	Hepatocellular carcinoma development induced by conditional β atenin activation in <i>Lkb1</i> ^{+/â^'} mice. Cancer Science, 2009, 100, 2046-2053.	3.9	32
85	Mouse Models of Colon Cancer. Gastroenterology, 2009, 136, 780-798.	1.3	217
86	Mouse models of gastrointestinal tumors. Cancer Science, 2006, 97, 355-361.	3.9	72
87	Destruction of Pancreatic β-Cells by Transgenic Induction of Prostaglandin E2 in the Islets. Journal of Biological Chemistry, 2006, 281, 29330-29336.	3.4	42
88	Hyperplastic Gastric Tumors with Spasmolytic Polypeptide–Expressing Metaplasia Caused by Tumor Necrosis Factor-α–Dependent Inflammation in Cyclooxygenase-2/Microsomal Prostaglandin E Synthase-1 Transgenic Mice. Cancer Research, 2005, 65, 9147-9151.	0.9	61
89	Pivotal Role of CXCR3 in Melanoma Cell Metastasis to Lymph Nodes. Cancer Research, 2004, 64, 4010-4017.	0.9	254
90	COX Selectivity and Animal Models for Colon Cancer. Current Pharmaceutical Design, 2002, 8, 1021-1034.	1.9	78

6

#	Article	IF	CITATIONS
91	Phospolipase A2 and apoptosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1585, 72-76.	2.4	121