Michel Sadelain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6717404/publications.pdf

Version: 2024-02-01

148 papers 30,356 citations

63 h-index 9861 141 g-index

157 all docs

157 docs citations

157 times ranked

21414 citing authors

#	Article	IF	CITATIONS
1	Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nature Reviews Immunology, 2022, 22, 85-96.	22.7	315
2	Lentiviral globin gene therapy with reduced-intensity conditioning in adults with \hat{l}^2 -thalassemia: a phase 1 trial. Nature Medicine, 2022, 28, 63-70.	30.7	18
3	HLA-independent T cell receptors for targeting tumors with low antigen density. Nature Medicine, 2022, 28, 345-352.	30.7	73
4	CD19-directed chimeric antigen receptor T cell therapy in Waldenstr $ ilde{A}$ \P m macroglobulinemia: a preclinical model and initial clinical experience. , 2022, 10, e004128.		18
5	Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nature Medicine, 2022, 28, 713-723.	30.7	117
6	Globin vector regulatory elements are active in early hematopoietic progenitor cells. Molecular Therapy, 2022, 30, 2199-2209.	8.2	3
7	Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature, 2022, 606, 389-395.	27.8	80
8	Interventions and outcomes of adult patients with B-ALL progressing after CD19 chimeric antigen receptor T-cell therapy. Blood, 2021, 138, 531-543.	1.4	42
9	Cas9â€Cleavage Sequences in Sizeâ€Reduced Plasmids Enhance Nonviral Genome Targeting of CARs in Primary Human T Cells. Small Methods, 2021, 5, e2100071.	8.6	20
10	Process and procedural adjustments to improve <scp>CD34</scp> + collection efficiency of hematopoietic progenitor cell collections in sickle cell disease. Transfusion, 2021, 61, 2775-2781.	1.6	3
11	A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti–PD-1 Agent Pembrolizumab. Cancer Discovery, 2021, 11, 2748-2763.	9.4	222
12	CAR T cells: Building on the CD19 paradigm. European Journal of Immunology, 2021, 51, 2151-2163.	2.9	43
13	Ectopic activation of the miR-200c–EpCAM axis enhances antitumor T cell responses in models of adoptive cell therapy. Science Translational Medicine, 2021, 13, eabg4328.	12.4	8
14	"IF-Better" Gating: Combinatorial Targeting and Synergistic Signaling for Enhanced CAR T Cell Efficacy. Blood, 2021, 138, 2774-2774.	1.4	6
15	A Phase II Study of Prophylactic Anakinra to Prevent CRS and Neurotoxicity in Patients Receiving CD19 CAR T Cell Therapy for Relapsed or Refractory Lymphoma. Blood, 2021, 138, 96-96.	1.4	24
16	Synergism between CAR-T Cells and a Personalized Tumor Vaccine in Hematological Malignances. Blood, 2021, 138, 737-737.	1.4	0
17	Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Science Translational Medicine, 2021, 13, eabh1962.	12.4	49
18	Senolytic CAR T cells reverse senescence-associated pathologies. Nature, 2020, 583, 127-132.	27.8	483

#	Article	IF	CITATIONS
19	Early experience using salvage radiotherapy for relapsed/refractory nonâ€Hodgkin lymphomas after CD19 chimericÂantigen receptor (CAR)ÂT cell therapy. British Journal of Haematology, 2020, 190, 45-51.	2.5	51
20	NOTCH and CAR Signaling Control T Cell Lineage Commitment from Pluripotent Stem Cells. Blood, 2020, 136, 30-30.	1.4	2
21	A Phase I Study of CD19-Targeted 19(T2)28z1xx CAR T Cells in Adult Patients with Relapsed or Refractory B-Cell Malignancies. Blood, 2020, 136, 43-44.	1.4	3
22	Targeted Integration of a CAR at a Novel Genomic Safe Harbor Directs Potent Therapeutic Outcomes. Blood, 2020, 136, 28-28.	1.4	2
23	Loss of <i>TET2</i> Uncouples Proliferative and Effector Functions in CAR T Cells. Blood, 2020, 136, 1-1.	1.4	2
24	Erythroid Specificity and Safety of Globin-Encoding Lentiviral Vectors. Blood, 2020, 136, 29-29.	1.4	0
25	The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Science Translational Medicine, 2019, 11 , .	12.4	326
26	CD19 CAR T cells following autologous transplantation in poor-risk relapsed and refractory B-cell non-Hodgkin lymphoma. Blood, 2019, 134, 626-635.	1.4	59
27	Clinical utilization of Chimeric Antigen Receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)–an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplantation, 2019, 54, 1868-1880.	2.4	86
28	CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature, 2019, 568, 112-116.	27.8	408
29	Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor–engineered T Cells. Clinical Cancer Research, 2019, 25, 4014-4025.	7.0	110
30	Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood, 2019, 134, 2361-2368.	1.4	190
31	Clinical Utilization of Chimeric Antigen Receptor T Cells in B Cell Acute Lymphoblastic Leukemia: An Expert Opinion from the European Society for Blood and Marrow Transplantation and the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019. 25. e76-e85.	2.0	85
32	Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nature Medicine, 2019, 25, 82-88.	30.7	329
33	Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2018, 378, 449-459.	27.0	1,951
34	Reprint of: Building a Safer and Faster CAR: Seatbelts, Airbags, and CRISPR. Biology of Blood and Marrow Transplantation, 2018, 24, S15-S19.	2.0	12
35	Posttransplant chimeric antigen receptor therapy. Blood, 2018, 131, 1045-1052.	1.4	67
36	Gene Therapy and Genome Editing. Hematology/Oncology Clinics of North America, 2018, 32, 329-342.	2.2	23

#	Article	IF	CITATIONS
37	Gene therapy comes of age. Science, 2018, 359, .	12.6	936
38	Building a Safer and Faster CAR: Seatbelts, Airbags, and CRISPR. Biology of Blood and Marrow Transplantation, 2018, 24, 27-31.	2.0	49
39	Concurrent therapy of chronic lymphocytic leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia utilizing CD19-targeted CAR T-cells. Leukemia and Lymphoma, 2018, 59, 1717-1721.	1.3	6
40	Low-Dose Radiation Conditioning Enables CAR T Cells to Mitigate Antigen Escape. Molecular Therapy, 2018, 26, 2542-2552.	8.2	169
41	Screening Clinical Cell Products for Replication Competent Retrovirus: The National Gene Vector Biorepository Experience. Molecular Therapy - Methods and Clinical Development, 2018, 10, 371-378.	4.1	24
42	CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nature Medicine, 2018, 24, 731-738.	30.7	861
43	Safety and efficacy of plerixafor dose escalation for the mobilization of CD34 ⁺ hematopoietic progenitor cells in patients with sickle cell disease: interim results. Haematologica, 2018, 103, 770-777.	3.5	47
44	Insights into Chimeric Antigen Receptor Therapy for Chronic Lymphoblastic Leukemia. Trends in Molecular Medicine, 2018, 24, 729-731.	6.7	0
45	Chimeric Antigen Receptor Therapy. New England Journal of Medicine, 2018, 379, 64-73.	27.0	1,488
46	Antibody with Infinite Affinity for In Vivo Tracking of Genetically Engineered Lymphocytes. Journal of Nuclear Medicine, 2018, 59, 1894-1900.	5.0	36
47	Autologous CD19-Targeted CAR T Cells in Patients with Residual CLL following Initial Purine Analog-Based Therapy. Molecular Therapy, 2018, 26, 1896-1905.	8.2	65
48	Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-cell Therapy in Patients with B-cell Acute Lymphoblastic Leukemia. Cancer Discovery, 2018, 8, 958-971.	9.4	594
49	A Phase I First-in-Human Clinical Trial of CD19-Targeted 19-28z/4-1BBL "Armored" CAR T Cells in Patients with Relapsed or Refractory NHL and CLL Including Richter's Transformation. Blood, 2018, 132, 224-224.	1.4	34
50	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	30.7	179
51	Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature, 2017, 543, 113-117.	27.8	1,314
52	Chimeric Antigen Receptors: A Cell and Gene Therapy Perspective. Molecular Therapy, 2017, 25, 1117-1124.	8.2	79
53	Therapeutic T cell engineering. Nature, 2017, 545, 423-431.	27.8	622
54	Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. Cancer Cell, 2017, 32, 506-519.e5.	16.8	240

#	Article	IF	CITATIONS
55	CD19 CAR T Cells. Cell, 2017, 171, 1471.	28.9	88
56	Cancer antigen profiling for malignant pleural mesothelioma immunotherapy: expression and coexpression of mesothelin, cancer antigen 125, and Wilms tumor 1. Oncotarget, 2017, 8, 77872-77882.	1.8	31
57	Studies of White Cell, Platelet, and Coagulation Activation with Plerixafor Administration in Patients with Sickle Cell Disease. Blood, 2017, 130, 963-963.	1.4	2
58	Chimeric antigen receptors: driving immunology towards synthetic biology. Current Opinion in Immunology, 2016, 41, 68-76.	5.5	77
59	LiPS-A3S, a human genomic site for robust expression of inserted transgenes. Molecular Therapy - Nucleic Acids, 2016, 5, e394.	5.1	1
60	Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects. Human Gene Therapy, 2016, 27, 295-304.	2.7	79
61	An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Molecular Therapy - Oncolytics, 2016, 3, 16023.	4.4	71
62	Biology and clinical application of CAR T cells for B cell malignancies. International Journal of Hematology, 2016, 104, 6-17.	1.6	68
63	Tales of Antigen Evasion from CAR Therapy. Cancer Immunology Research, 2016, 4, 473-473.	3.4	6
64	Combinatorial Antigen Targeting: Ideal T-Cell Sensing and Anti-Tumor Response. Trends in Molecular Medicine, 2016, 22, 271-273.	6.7	11
65	Escape Mutations, Ganciclovir Resistance, and Teratoma Formation in Human iPSCs Expressing an HSVtk Suicide Gene. Molecular Therapy - Nucleic Acids, 2016, 5, e284.	5.1	21
66	Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discovery, 2016, 6, 133-146.	9.4	359
67	Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. Journal of Clinical Investigation, 2016, 126, 3130-3144.	8.2	773
68	Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. Journal of Clinical Investigation, 2016, 126, 4262-4272.	8.2	229
69	Probing the AML Surfaceome for Chimeric Antigen Receptor (CAR) Targets. Blood, 2016, 128, 526-526.	1.4	1
70	Myeloid leukemia switch as immune escape from CD19 chimeric antigen receptor (CAR) therapy. Translational Cancer Research, 2016, 5, S221-S225.	1.0	21
71	Plerixafor+G-CSF–mobilized CD34+ cells represent an optimal graft source for thalassemia gene therapy. Blood, 2015, 126, 616-619.	1.4	45
72	CD19 CAR Therapy for Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e360-e363.	3.8	45

#	Article	IF	CITATIONS
73	New Cell Sources for T Cell Engineering and Adoptive Immunotherapy. Cell Stem Cell, 2015, 16, 357-366.	11.1	134
74	The quest for spatio-temporal control of CAR T cells. Cell Research, 2015, 25, 1281-1282.	12.0	13
75	The pharmacology of second-generation chimeric antigen receptors. Nature Reviews Drug Discovery, 2015, 14, 499-509.	46.4	411
76	The Journey from Discoveries in Fundamental Immunology to Cancer Immunotherapy. Cancer Cell, 2015, 27, 439-449.	16.8	194
77	Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell, 2015, 28, 415-428.	16.8	641
78	ASGCT and JSGT Joint Position Statement on Human Genomic Editing. Molecular Therapy, 2015, 23, 1282.	8.2	47
79	The Polycomb Group Protein L3MBTL1 Represses a SMAD5-Mediated Hematopoietic Transcriptional Program in Human Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 658-669.	4.8	7
80	CAR therapy: the CD19 paradigm. Journal of Clinical Investigation, 2015, 125, 3392-3400.	8.2	187
81	Multi-Center Clinical Trial of CAR T Cells in Pediatric/Young Adult Patients with Relapsed B-Cell ALL. Blood, 2015, 126, 2533-2533.	1.4	10
82	Implications of Minimal Residual Disease Negative Complete Remission (MRD-CR) and Allogeneic Stem Cell Transplant on Safety and Clinical Outcome of CD19-Targeted 19-28z CAR Modified T Cells in Adult Patients with Relapsed, Refractory B-Cell ALL. Blood, 2015, 126, 682-682.	1.4	37
83	From T-cell Engineering to CAR therapy: Progress and Prospects. Blood, 2015, 126, SCI-23-SCI-23.	1.4	1
84	Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition. PLoS ONE, 2015, 10, e0130518.	2.5	53
85	Mesothelin Overexpression Is a Marker of Tumor Aggressiveness and Is Associated with Reduced Recurrence-Free and Overall Survival in Early-Stage Lung Adenocarcinoma. Clinical Cancer Research, 2014, 20, 1020-1028.	7.0	128
86	A Cell Engineering Strategy to Enhance the Safety of Stem Cell Therapies. Cell Reports, 2014, 8, 1677-1685.	6.4	9
87	Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Science Translational Medicine, 2014, 6, 261ra151.	12.4	432
88	Safe mobilization of CD34+ cells in adults with \hat{l}^2 -thalassemia and validation of effective globin gene transfer for clinical investigation. Blood, 2014, 123, 1483-1486.	1.4	62
89	Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014, 6, 224ra25.	12.4	2,069
90	The Basic Principles of Chimeric Antigen Receptor Design. Cancer Discovery, 2013, 3, 388-398.	9.4	1,108

#	Article	IF	Citations
91	Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nature Biotechnology, 2013, 31, 71-75.	17.5	719
92	CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Science Translational Medicine, 2013, 5, 177ra38.	12.4	1,748
93	Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity. Journal of Clinical Investigation, 2013, 123, 2654-2662.	8.2	21
94	First US Phase I Clinical Trial Of Globin Gene Transfer For The Treatment Of Beta-Thalassemia Major. Blood, 2013, 122, 716-716.	1.4	7
95	Mesothelin Overexpression Promotes Mesothelioma Cell Invasion and MMP-9 Secretion in an Orthotopic Mouse Model and in Epithelioid Pleural Mesothelioma Patients. Clinical Cancer Research, 2012, 18, 2478-2489.	7.0	159
96	Safe harbours for the integration of new DNA in the human genome. Nature Reviews Cancer, 2012, 12, 51-58.	28.4	391
97	Impact of the Conditioning Chemotherapy On Outcomes in Adoptive T Cell Therapy: Results From a Phase I Clinical Trial of Autologous CD19-Targeted T Cells for Patients with Relapsed CLL. Blood, 2012, 120, 1797-1797.	1.4	6
98	CD19 Targeted Allogeneic EBV-Specific T Cells for the Treatment of Relapsed ALL in Pediatric Patients Post HSCT. Blood, 2012, 120, 353-353.	1.4	6
99	Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011, 118, 4817-4828.	1.4	1,135
100	Genomic safe harbors permit high \hat{l}^2 -globin transgene expression in thalassemia induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 73-78.	17.5	277
101	Immune responses and immunotherapeutic interventions in malignant pleural mesothelioma. Cancer Immunology, Immunotherapy, 2011, 60, 1509-1527.	4.2	50
102	Comparative Blood Group Profiling of Human Erythroid Cells (EBs) Generated from Adult Blood (AB), Cord Blood (CB), Human Embryonic Stem Cells (hESC) and Induced Pluripotent Stem Cells (iPS). Blood, 2011, 118, 1027-1027.	1.4	3
103	Over-Expression of TRAIL on Donor T Cells Enhances GVT and Suppresses Gvhd Via Elimination of Alloreactive T Cells and Host APC. Blood, 2011, 118, 817-817.	1.4	1
104	Genomic Safe Harbors in Human iPS Cells. Blood, 2011, 118, SCI-47-SCI-47.	1.4	0
105	Artificial Antigen Presenting Cells Expand NY-ESO-1 Antigen-Specific CD8+ T Cells From Patients with Melanoma. Blood, 2011, 118, 4309-4309.	1.4	0
106	In Vivo comparison of 3 Suicide Gene-Prodrug Combinations in a Mouse Graft-Versus-Host-Disease Model. Blood, 2011, 118, 3121-3121.	1.4	0
107	Targeting a Novel Epigenetic Silencing Mechanism to Efficiently Upregulate Fetal Globin Gene Expression. Blood, 2011, 118, 352-352.	1.4	0
108	Strategy for a multicenter phase I clinical trial to evaluate globin gene transfer in βâ€ŧhalassemia. Annals of the New York Academy of Sciences, 2010, 1202, 52-58.	3.8	29

#	Article	IF	CITATIONS
109	Chimeric Antigen Receptors Combining 4-1BB and CD28 Signaling Domains Augment Pl3kinase/AKT/Bcl-XL Activation and CD8+ T Cell–mediated Tumor Eradication. Molecular Therapy, 2010, 18, 413-420.	8.2	442
110	Virus Specific T-Lymphocytes Genetically Modified to Target the CD19 Antigen Eradicates Systemic Lymphoma In Mice. Blood, 2010, 116, 2092-2092.	1.4	1
111	Recovery and Biodistribution of Ex-Vivo Expanded Human Erythroblasts Injected Into NOD/SCID/IL2Rî³null Mice. Blood, 2010, 116, 338-338.	1.4	1
112	T Cells Genetically Targeted to CD19 Eradicate B-ALL In a Novel Syngeneic Mouse Disease Model. Blood, 2010, 116, 171-171.	1.4	8
113	Supplying Clotting Factors From Hematopoietic Stem Cell–derived Erythroid and Megakaryocytic Lineage Cells. Molecular Therapy, 2009, 17, 1994-1999.	8.2	12
114	A Herceptin-Based Chimeric Antigen Receptor with Modified Signaling Domains Leads to Enhanced Survival of Transduced T Lymphocytes and Antitumor Activity. Journal of Immunology, 2009, 183, 5563-5574.	0.8	258
115	The promise and potential pitfalls of chimeric antigen receptors. Current Opinion in Immunology, 2009, 21, 215-223.	5.5	423
116	Manufacturing Validation of Biologically Functional T Cells Targeted to CD19 Antigen for Autologous Adoptive Cell Therapy. Journal of Immunotherapy, 2009, 32, 169-180.	2.4	269
117	T-Cell Engineering for Cancer Immunotherapy. Cancer Journal (Sudbury, Mass), 2009, 15, 451-455.	2.0	39
118	Stem Cell Engineering for the Treatment of Severe Hemoglobinopathies. Current Molecular Medicine, 2008, 8, 690-697.	1.3	25
119	Therapeutic Options for Patients with Severe \hat{l}^2 -Thalassemia: The Need for Globin Gene Therapy. Human Gene Therapy, 2007, 18, 1-9.	2.7	48
120	Genetically Targeted T Cells Eradicate Systemic Acute Lymphoblastic Leukemia Xenografts. Clinical Cancer Research, 2007, 13, 5426-5435.	7.0	398
121	Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in \hat{l}^2 -thalassemic mice. Blood, 2007, 110, 4175-4178.	1.4	50
122	T cell–encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nature Medicine, 2007, 13, 1440-1449.	30.7	265
123	Recent advances in globin gene transfer for the treatment of beta-thalassemia and sickle cell anemia. Current Opinion in Hematology, 2006, 13, 142-148.	2.5	47
124	Progress Toward the Genetic Treatment of the \hat{I}^2 -Thalassemias. Annals of the New York Academy of Sciences, 2005, 1054, 78-91.	3.8	36
125	Targeted Elimination of Prostate Cancer by Genetically Directed Human T Lymphocytes. Cancer Research, 2005, 65, 9080-9088.	0.9	108
126	Artificial Antigen-Presenting Cells Permit Selective In Vitro Generation of CMV-Specific T-Cells of Desired HLA Allelic Restriction for Adoptive Immunotherapy in Recipients of HLA Disparate Allografts Blood, 2005, 106, 1298-1298.	1.4	1

#	Article	IF	Citations
127	Generation of CMV-Specific T-Lymphocytes for Adoptive Immunotherapy: A Comparison of Artificial Antigen-Presenting Cells and Autologous Dendritic Cells Pulsed with CMV-pp65 Protein-Spanning Pentadecapeptide Pools Blood, 2005, 106, 5546-5546.	1.4	0
128	Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature Medicine, 2003, 9, 279-286.	30.7	586
129	Targeting tumours with genetically enhanced T lymphocytes. Nature Reviews Cancer, 2003, 3, 35-45.	28.4	467
130	A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human \hat{l}^2 -globin gene transfer. Blood, 2003, 101, 2932-2939.	1.4	211
131	Sturm und Drang over Suicidal Lymphocytes. Molecular Therapy, 2002, 5, 655-657.	8.2	15
132	Successful treatment of murine \hat{l}^2 -thalassemia intermedia by transfer of the human \hat{l}^2 -globin gene. Blood, 2002, 99, 1902-1908.	1.4	159
133	Globin gene transfer for the treatment of severe hemoglobinopathies: a paradigm for stem cell-based gene therapy. Journal of Gene Medicine, 2002, 4, 113-121.	2.8	11
134	Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nature Biotechnology, 2002, 20, 70-75.	17.5	826
135	Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nature Biotechnology, 2000, 18, 405-409.	17.5	165
136	Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature, 2000, 406, 82-86.	27.8	581
137	Rapid selection of antigen-specific T lymphocytes by retroviral transduction. Blood, 2000, 96, 109-117.	1.4	63
138	Stable in vivo expression of glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem cells by gene transfer. Blood, 2000, 96, 4111-4117.	1.4	25
139	The cHS4 Insulator Increases the Probability of Retroviral Expression at Random Chromosomal Integration Sites. Journal of Virology, 2000, 74, 4679-4687.	3.4	198
140	Stable in vivo expression of glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem cells by gene transfer. Blood, 2000, 96, 4111-4117.	1.4	1
141	Prostate-specific membrane antigen (PSMA)-specific monoclonal antibodies in the treatment of prostate and other cancers. Cancer and Metastasis Reviews, 1999, 18, 483-490.	5.9	61
142	Adoptive-transfer therapy of tumors with the tumor-specific primary cytotoxic T cells induced in vitro with the B7.1-transduced MCA205 cell line. Cancer Immunology, Immunotherapy, 1999, 47, 257-264.	4.2	5
143	Activation conditions determine susceptibility of murine primary T-lymphocytes to retroviral infection. Journal of Gene Medicine, 1999, 1, 341-351.	2.8	37
144	Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen. Neoplasia, 1999, 1, 123-127.	5.3	197

#	ARTICLE	IF	CITATIONS
145	Activation conditions determine susceptibility of murine primary Tâ€lymphocytes to retroviral infection. Journal of Gene Medicine, 1999, 1, 341-351.	2.8	3
146	Why commonplace encounters turn to fatal attraction. Nature Genetics, 1998, 20, 103-104.	21.4	8
147	Antigen-dependent CD28 Signaling Selectively Enhances Survival and Proliferation in Genetically Modified Activated Human Primary T Lymphocytes. Journal of Experimental Medicine, 1998, 188, 619-626.	8.5	268
148	GENETIC TREATMENT OF THE HAEMOGLOINOPATHIES: RECOMBINATIONS AND NEW COMBINATIONS. British Journal of Haematology, 1997, 98, 247-253.	2.5	22