Guy Barry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/671710/publications.pdf Version: 2024-02-01

CUV RADDV

#	Article	IF	CITATIONS
1	Identifying gene expression profiles associated with neurogenesis and inflammation in the human subependymal zone from development through aging. Scientific Reports, 2022, 12, 40.	1.6	8
2	Reduced adult neurogenesis is associated with increased macrophages in the subependymal zone in schizophrenia. Molecular Psychiatry, 2021, 26, 6880-6895.	4.1	20
3	Reduced Insulin-Like Growth Factor Family Member Expression Predicts Neurogenesis Marker Expression in the Subependymal Zone in Schizophrenia and Bipolar Disorder. Schizophrenia Bulletin, 2021, 47, 1168-1178.	2.3	9
4	O11.5. INCREASED INFLAMMATION AND MACROPHAGE INFILTRATION IS ASSOCIATED WITH ALTERED SUBEPENDYMAL ZONE NEUROGENESIS IN SCHIZOPHRENIA BUT NOT BIPOLAR DISORDER. Schizophrenia Bulletin, 2020, 46, S28-S29.	2.3	0
5	Direct evidence for transport of RNA from the mouse brain to the germline and offspring. BMC Biology, 2020, 18, 45.	1.7	18
6	Building a Human Brain for Research. Frontiers in Molecular Neuroscience, 2020, 13, 22.	1.4	9
7	Reduction in IGF1 mRNA in the Human Subependymal Zone During Aging. , 2019, 10, 197.		12
8	Genes with human-specific features are primarily involved with brain, immune and metabolic evolution. BMC Bioinformatics, 2019, 20, 406.	1.2	11
9	Multiple Innovations in Genetic and Epigenetic Mechanisms Cooperate to Underpin Human Brain Evolution. Molecular Biology and Evolution, 2018, 35, 263-268.	3.5	8
10	THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Translational Psychiatry, 2018, 8, 89.	2.4	35
11	Small RNAs and Transposable Elements Are Key Components in the Control of Adaptive Evolution in Eukaryotes. BioEssays, 2018, 40, e1800070.	1.2	5
12	Long Non-Coding RNAs in Neuronal Aging. Non-coding RNA, 2018, 4, 12.	1.3	57
13	Adar3 Is Involved in Learning and Memory in Mice. Frontiers in Neuroscience, 2018, 12, 243.	1.4	54
14	The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Scientific Reports, 2017, 7, 40127.	1.6	92
15	Using Human iPSC-Derived Neurons to Uncover Activity-Dependent Non-Coding RNAs. Genes, 2017, 8, 401.	1.0	3
16	Decline in Proliferation and Immature Neuron Markers in the Human Subependymal Zone during Aging: Relationship to EGF- and FGF-Related Transcripts. Frontiers in Aging Neuroscience, 2016, 8, 274.	1.7	41
17	Has inheritance gone retro?. BioEssays, 2016, 38, 716-716.	1.2	0
18	Activity-Dependent Changes in Gene Expression in Schizophrenia Human-Induced Pluripotent Stem Cell Neurons. JAMA Psychiatry, 2016, 73, 1180.	6.0	40

GUY BARRY

#	Article	IF	CITATIONS
19	Nuclear factor one B (<i>NFIB</i>) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget, 2016, 7, 29306-29320.	0.8	34
20	Long Non-Coding RNA Expression during Aging in the Human Subependymal Zone. Frontiers in Neurology, 2015, 6, 45.	1.1	44
21	Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution. Neuron, 2015, 88, 861-877.	3.8	366
22	NFIB-Mediated Repression of the Epigenetic Factor <i>Ezh2</i> Regulates Cortical Development. Journal of Neuroscience, 2014, 34, 2921-2930.	1.7	70
23	The emerging role of RNA and DNA editing in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 308-316.	3.3	26
24	Integrating the roles of long and small non-coding RNA in brain function and disease. Molecular Psychiatry, 2014, 19, 410-416.	4.1	143
25	NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis. Cerebral Cortex, 2014, 24, 261-279.	1.6	64
26	The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Molecular Psychiatry, 2014, 19, 486-494.	4.1	356
27	Lamarckian evolution explains human brain evolution and psychiatric disorders. Frontiers in Neuroscience, 2013, 7, 224.	1.4	14
28	The role of regulatory RNA in cognitive evolution. Trends in Cognitive Sciences, 2012, 16, 497-503.	4.0	44
29	Nuclear Factor I Genes Regulate Neuronal Migration. NeuroSignals, 2012, 20, 159-167.	0.5	23
30	Nuclear factor one X regulates the development of multiple cellular populations in the postnatal cerebellum. Journal of Comparative Neurology, 2011, 519, 3532-3548.	0.9	44
31	NFIA Controls Telencephalic Progenitor Cell Differentiation through Repression of the Notch Effector Hes1. Journal of Neuroscience, 2010, 30, 9127-9139.	1.7	119
32	Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice. Neural Development, 2009, 4, 43.	1.1	58
33	Specific Clial Populations Regulate Hippocampal Morphogenesis. Journal of Neuroscience, 2008, 28, 12328-12340.	1.7	84
34	Neurosteroids and Sporadic Alzheimers Disease. Current Alzheimer Research, 2008, 5, 367-374.	0.7	6
35	Emx and Nfi genes regulate cortical development and axon guidance in the telencephalon. Novartis Foundation Symposium, 2007, 288, 230-242; discussion 242-5, 276-81.	1.2	10
36	Identification of differentially expressed genes induced by transient ischemic stroke. Molecular Brain Research, 2002, 101, 12-22.	2.5	57

Guy Barry

#	Article	IF	CITATIONS
37	Characterization of Î ³ -Aminobutyric Acid Receptor GABAB(1e), a GABAB(1) Splice Variant Encoding a Truncated Receptor. Journal of Biological Chemistry, 2000, 275, 32174-32181.	1.6	95
38	Nephroblastoma overexpressed gene (NOV) codes for a growth factor that induces protein tyrosine phosphorylation. Gene, 1999, 238, 471-478.	1.0	54
39	Expression and Characterization of a Putative High Affinity Human Soluble Leptin Receptor. Endocrinology, 1997, 138, 3548-3554.	1.4	116
40	Cloning and characterization of the human corticotropin-releasing factor-2 receptor complementary deoxyribonucleic acid Endocrinology, 1996, 137, 72-77.	1.4	214
41	Emx and Nfi Genes Regulate Cortical Development and Axon Guidance in the Telencephalon. Novartis Foundation Symposium, 0, , 230-245.	1.2	15
42	Expression and Characterization of a Putative High Affinity Human Soluble Leptin Receptor. , 0, .		35