James T Thackeray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6717092/publications.pdf Version: 2024-02-01

INMES T THACKEDAY

#	Article	IF	CITATIONS
1	Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction. Journal of the American College of Cardiology, 2018, 71, 263-275.	1.2	199
2	Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC: Cardiovascular Imaging, 2015, 8, 1417-1426.	2.3	159
3	Clinical Molecular Imaging of Chemokine Receptor CXCR4 Expression in Atherosclerotic Plaque Using ⁶⁸ Ga-Pentixafor PET: Correlation with Cardiovascular Risk Factors and Calcified Plaque Burden. Journal of Nuclear Medicine, 2018, 59, 266-272.	2.8	92
4	Low STAT3 expression sensitizes to toxic effects of β-adrenergic receptor stimulation in peripartum cardiomyopathy. European Heart Journal, 2017, 38, ehw086.	1.0	87
5	Targeting post-infarct inflammation by PET imaging: comparison of 68Ga-citrate and 68Ga-DOTATATE with 18F-FDG in a mouse model. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 317-327.	3.3	60
6	Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovascular Diabetology, 2011, 10, 75.	2.7	59
7	Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1934-1944.	3.3	58
8	Molecular Imaging of Myocardial Inflammation With Positron Emission Tomography Post-Ischemia. JACC: Cardiovascular Imaging, 2018, 11, 1340-1355.	2.3	57
9	Assessment of cardiac autonomic neuronal function using PET imaging. Journal of Nuclear Cardiology, 2013, 20, 150-165.	1.4	56
10	Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction. Theranostics, 2016, 6, 1768-1779.	4.6	56
11	Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 771-780.	3.3	53
12	Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. European Heart Journal, 2020, 41, 3564-3575.	1.0	52
13	Presence of Specific 11C-meta-Hydroxyephedrine Retention in Heart, Lung, Pancreas, and Brown Adipose Tissue. Journal of Nuclear Medicine, 2007, 48, 1733-1740.	2.8	41
14	Simultaneous dual-isotope solid-state detector SPECT for improved tracking of white blood cells in suspected endocarditis. European Heart Journal, 2017, 38, ehw231.	1.0	39
15	Alterations of pre- and postsynaptic noradrenergic signaling in a rat model of adriamycin-induced cardiotoxicity. Journal of Nuclear Cardiology, 2010, 17, 254-263.	1.4	37
16	Insulin supplementation attenuates cancer-induced cardiomyopathy and slows tumor disease progression. JCI Insight, 2017, 2, .	2.3	37
17	Cardiac Fibroblast Activation in Patients Early After Acute Myocardial Infarction: Integration with MR Tissue Characterization and Subsequent Functional Outcome. Journal of Nuclear Medicine, 2022, 63, 1415-1423.	2.8	36
18	PSA-stratified detection rates for [68Ga]THP-PSMA, a novel probe for rapid kit-based 68Ga-labeling and PET imaging, in patients with biochemical recurrence after primary therapy for prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 913-922.	3.3	34

JAMES T THACKERAY

#	Article	IF	CITATIONS
19	Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. Journal of Nuclear Cardiology, 2021, 28, 1636-1645.	1.4	32
20	The Changing Face of Nuclear Cardiology: Guiding Cardiovascular Care Toward Molecular Medicine. Journal of Nuclear Medicine, 2020, 61, 951-961.	2.8	31
21	Radionuclide Image-Guided Repair ofÂtheÂHeart. JACC: Cardiovascular Imaging, 2020, 13, 2415-2429.	2.3	29
22	Angiotensin-converting enzyme inhibitor treatment early after myocardial infarction attenuates acute cardiac and neuroinflammation without effect on chronic neuroinflammation. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1757-1768.	3.3	29
23	Test–retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nuclear Medicine and Biology, 2013, 40, 676-681.	0.3	28
24	Molecular Imaging of Inflammation and Fibrosis in Pressure Overload Heart Failure. Circulation Research, 2021, 129, 369-382.	2.0	26
25	Diagnostic accuracy of cadmium-zinc-telluride-based myocardial perfusion SPECT: impact of attenuation correction using a co-registered external computed tomography. European Heart Journal Cardiovascular Imaging, 2016, 17, 1036-1043.	0.5	25
26	Molecular imaging of fibroblast activation protein after myocardial infarction using the novel radiotracer [⁶⁸ Ga]MHLL1. Theranostics, 2021, 11, 7755-7766.	4.6	25
27	Multimodality Imaging of Inflammation and Ventricular Remodeling in Pressure-Overload Heart Failure. Journal of Nuclear Medicine, 2020, 61, 590-596.	2.8	23
28	Imaging Characteristics and First Experience of [68Ga]THP-PSMA, a Novel Probe for Rapid Kit-Based Ga-68 Labeling and PET Imaging: Comparative Analysis with [68Ga]PSMA I&T. Molecular Imaging and Biology, 2018, 20, 650-658.	1.3	22
29	Molecular imaging of inflammation crosstalk along the cardio-renal axis following acute myocardial infarction. Theranostics, 2021, 11, 7984-7994.	4.6	22
30	Impact of Image-Derived Input Function and Fit Time Intervals on Patlak Quantification of Myocardial Glucose Uptake in Mice. Journal of Nuclear Medicine, 2015, 56, 1615-1621.	2.8	20
31	Recent Updates on Molecular Imaging Reporting and Data Systems (MI-RADS) for Theranostic Radiotracers—Navigating Pitfalls of SSTR- and PSMA-Targeted PET/CT. Journal of Clinical Medicine, 2019, 8, 1060.	1.0	20
32	Reproducibility and Comparability of Preclinical PET Imaging Data: A Multicenter Small-Animal PET Study. Journal of Nuclear Medicine, 2019, 60, 1483-1491.	2.8	20
33	PET imaging of the autonomic nervous system. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2016, 60, 362-82.	0.4	20
34	Reduced CGP12177 binding to cardiac β-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nuclear Medicine and Biology, 2011, 38, 1059-1066.	0.3	19
35	Current and Emerging Preclinical Approaches for Imaging-Based Characterization of Atherosclerosis. Molecular Imaging and Biology, 2018, 20, 869-887.	1.3	19
36	Anesthesia and Preconditioning Induced Changes in Mouse Brain [18F] FDG Uptake and Kinetics. Molecular Imaging and Biology, 2019, 21, 1089-1096.	1.3	18

JAMES T THACKERAY

#	Article	IF	CITATIONS
37	¹¹ C-Methionine PET Identifies Astroglia Involvement in Heart–Brain Inflammation Networking After Acute Myocardial Infarction. Journal of Nuclear Medicine, 2020, 61, 977-980.	2.8	18
38	CXCR4-Targeted Imaging of Post-Infarct Myocardial Tissue Inflammation. JACC: Cardiovascular Imaging, 2022, 15, 372-374.	2.3	17
39	Insulin restores myocardial presynaptic sympathetic neuronal integrity in insulin-resistant diabetic rats. Journal of Nuclear Cardiology, 2013, 20, 845-856.	1.4	16
40	Imaging the Molecular Footprints of the Heart–Brain Axis in Cardiovascular Disease. Journal of Nuclear Medicine, 2019, 60, 728-729.	2.8	14
41	Characterizing the transition from immune response to tissue repair after myocardial infarction by multiparametric imaging. Basic Research in Cardiology, 2022, 117, 14.	2.5	14
42	Regional Myocardial Perfusion Disturbance in Experimental Chronic Chagas Cardiomyopathy. Journal of Nuclear Medicine, 2018, 59, 1430-1436.	2.8	13
43	Mars Shot for Nuclear Medicine, Molecular Imaging, and Molecularly Targeted Radiopharmaceutical Therapy. Journal of Nuclear Medicine, 2021, 62, 6-14.	2.8	13
44	Evaluation of ⁶⁸ Ga-Glutamate Carboxypeptidase II Ligand Positron Emission Tomography for Clinical Molecular Imaging of Atherosclerotic Plaque Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2213-2219.	1.1	12
45	Anthracycline-free tumor elimination in mice leads toÂfunctional and molecular cardiac recovery from cancer-induced alterations in contrast to long-lasting doxorubicin treatment effects. Basic Research in Cardiology, 2021, 116, 61.	2.5	11
46	Early diabetes treatment does not prevent sympathetic dysinnervation in the streptozotocin diabetic rat heart. Journal of Nuclear Cardiology, 2014, 21, 829-841.	1.4	10
47	Cardiac Î ² -Adrenoceptor Expression Is Reduced in Zucker Diabetic Fatty Rats as Type-2 Diabetes Progresses. PLoS ONE, 2015, 10, e0127581.	1.1	10
48	Accuracy of cardiac functional parameters measured from gated radionuclide myocardial perfusion imaging in mice. Journal of Nuclear Cardiology, 2020, 27, 1317-1327.	1.4	10
49	Translational Molecular Nuclear Cardiology. Cardiology Clinics, 2016, 34, 187-198.	0.9	9
50	PET Assessment of Immune Cell Activity and Therapeutic Monitoring Following Myocardial Infarction. Current Cardiology Reports, 2018, 20, 13.	1.3	8
51	Insulin therapy normalizes reduced myocardial β-adrenoceptors at both the onset and after sustained hyperglycemia in diabetic rats. Life Sciences, 2015, 132, 101-107.	2.0	7
52	Reliable quantification of myocardial sympathetic innervation and regional denervation using [11C]meta-hydroxyephedrine PET. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1722-1735.	3.3	7
53	Gauging Cardiac Repair and Regeneration with New Molecular Probes. Journal of Nuclear Medicine, 2018, 59, 549-550.	2.8	6
54	Radionuclide Imaging of the Molecular Mechanisms Linking Heart and Brain in Ischemic Syndromes. Circulation: Cardiovascular Imaging, 2020, 13, .	1.3	4

JAMES T THACKERAY

#	Article	IF	CITATIONS
55	Molecular Imaging Using Cardiac PET/CT: Opportunities to Harmonize Diagnosis and Therapy. Current Cardiology Reports, 2021, 23, 96.	1.3	3
56	Imaging inflammation in cardiovascular disease: translational perspective and overview. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2020, 64, 1-3.	0.4	3
57	Sound and Fibroblast Activation Protein Inhibitor. Circulation: Cardiovascular Imaging, 2020, 13, e011603.	1.3	2
58	Specificity vs versatility: A fine balance for novel targeted molecular imaging radiotracers. Journal of Nuclear Cardiology, 2017, 24, 571-573.	1.4	1
59	PET Imaging of Autonomic Innervation and Receptors. , 0, , 203-235.		1
60	New Tricks for an Aging Dog. Circulation: Cardiovascular Imaging, 2019, 12, e009452.	1.3	1
61	Does lipid-lowering medication improve cardiac sympathetic nerve integrity?. Journal of Nuclear Cardiology, 2021, 28, 1458-1460.	1.4	1
62	Introducing Fellowship Programs: Cardiovascular Nuclear Imaging at Hannover Medical School, Germany. Annals of Nuclear Cardiology, 2015, 1, 98-102.	0.0	1
63	Preclinical Multimodality Imaging and Image Fusion in Cardiovascular Disease. , 2019, , 161-181.		1
64	Fantastic voyage: Catheter-based quantification of tracer distribution on a miniature scale. Journal of Nuclear Cardiology, 2022, 29, 677-679.	1.4	0
65	The right stuff? Imaging cardiac sympathetic neuronal integrity of the right ventricle in pulmonary arterial hypertension. Journal of Nuclear Cardiology, 2021, 28, 423-426.	1.4	0
66	Fibrin-Targeted PET/CMR in AtrialÂFibrillation. JACC: Cardiovascular Imaging, 2021, , .	2.3	0
67	Good Things in Small Packages: Growth and Potential of Theragnostic Platforms in Cardiovascular Medicine. Circulation: Cardiovascular Imaging, 2022, 15, .	1.3	0