
Andreas Focks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6717084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the risks for animal health related to the presence of hydroxymethylfurfural (HMF) in feed for honey bees. EFSA Journal, 2022, 20, e07227.	0.9	3
2	Application of General Unified Threshold Models of Survival Models for Regulatory Aquatic Pesticide Risk Assessment Illustrated with an Example for the Insecticide Chlorpyrifos. Integrated Environmental Assessment and Management, 2021, 17, 243-258.	1.6	9
3	Soil Biodiversity: Stateâ€ofâ€theâ€Art and Possible Implementation in Chemical Risk Assessment. Integrated Environmental Assessment and Management, 2021, 17, 541-551.	1.6	10
4	Keeping modelling notebooks with TRACE: Good for you and good for environmental research and management support. Environmental Modelling and Software, 2021, 136, 104932.	1.9	19
5	Mechanistic Effect Modeling of Earthworms in the Context of Pesticide Risk Assessment: Synthesis of the FORESEE Workshop. Integrated Environmental Assessment and Management, 2021, 17, 352-363.	1.6	18
6	Statement of the PPR PanelÂon a framework for conducting the environmental exposure and risk assessment for transition metals when used as active substances in plant protection products (PPP). EFSA Journal, 2021, 19, e06498.	0.9	5
7	Analysis of background variability of honey bee colony size. EFSA Supporting Publications, 2021, 18, 6518E.	0.3	6
8	Safety for the environment of a feed additive consisting of nicarbazin (Coxar®) for use in turkeys for fattening (Huvepharma N.V.). EFSA Journal, 2021, 19, e06715.	0.9	1
9	Improving Risk Assessment by Predicting the Survival of Field Gammarids Exposed to Dynamic Pesticide Mixtures. Environmental Science & Technology, 2020, 54, 12383-12392.	4.6	9
10	Chemical pollution imposes limitations to the ecological status of European surface waters. Scientific Reports, 2020, 10, 14825.	1.6	72
11	Potential impact of chemical stress on freshwater invertebrates: A sensitivity assessment on continental and national scale based on distribution patterns, biological traits, and relatedness Science of the Total Environment, 2020, 731, 139150.	3.9	5
12	Influence of pH on the toxicity of ionisable pharmaceuticals and personal care products to freshwater invertebrates. Ecotoxicology and Environmental Safety, 2020, 191, 110172.	2.9	10
13	Linking Morphology, Toxicokinetic, and Toxicodynamic Traits of Aquatic Invertebrates to Pyrethroid Sensitivity. Environmental Science & Technology, 2020, 54, 5687-5699.	4.6	24
14	Computational material flow analysis for thousands of chemicals of emerging concern in European waters. Journal of Hazardous Materials, 2020, 397, 122655.	6.5	31
15	Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environmental Sciences Europe, 2019, 31, .	2.6	142
16	Modification of the terms of authorisation regarding the maximum inclusion level of Maxiban® G160 (narasin and nicarbazin) for chickens for fattening. EFSA Journal, 2019, 17, e05786.	0.9	4
17	Let us empower the WFD to prevent risks of chemical pollution in European rivers and lakes. Environmental Sciences Europe, 2019, 31, .	2.6	13
18	Exposure pattern-specific species sensitivity distributions for the ecological risk assessments of insecticides Ecotoxicology and Environmental Safety, 2019, 180, 252-258.	2.9	8

ANDREAS FOCKS

#	Article	IF	CITATIONS
19	Modeling the Sensitivity of Aquatic Macroinvertebrates to Chemicals Using Traits. Environmental Science & Technology, 2019, 53, 6025-6034.	4.6	42
20	Predictive models in ecotoxicology: Bridging the gap between scientific progress and regulatory applicability—Remarks and research needs. Integrated Environmental Assessment and Management, 2019, 15, 345-351.	1.6	5
21	Assessing the ecological impact of chemical pollution on aquatic ecosystems requires the systematic exploration and evaluation of four lines of evidence. Environmental Sciences Europe, 2019, 31, .	2.6	19
22	Safety of Lactococcus lactis NCIMB 30160 as a feed additive for all animal species. EFSA Journal, 2019, 17, e05890.	0.9	0
23	Safety and efficacy of Elancoban® G200 (monensin sodium) for chickens for fattening, chickens reared for laying and turkeys. EFSA Journal, 2019, 17, e05891.	0.9	3
24	Improved component-based methods for mixture risk assessment are key to characterize complex chemical pollution in surface waters. Environmental Sciences Europe, 2019, 31, .	2.6	41
25	Safety for the environment of Monimax® (monensin sodium and nicarbazin) for chickens for fattening, chickens reared for laying and for turkeys for fattening. EFSA Journal, 2019, 17, e05888.	0.9	3
26	Agriculture versus wastewater pollution as drivers of macroinvertebrate community structure in streams. Science of the Total Environment, 2019, 659, 1256-1265.	3.9	60
27	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environmental Sciences Europe, 2019, 31, .	2.6	7
28	Mixtures of chemicals are important drivers of impacts on ecological status in European surface waters. Environmental Sciences Europe, 2019, 31, .	2.6	24
29	Safety of Lancer® (lanthanide citrate) as a zootechnical additive for weaned piglets. EFSA Journal, 2019, 17, e05912.	0.9	3
30	Predictive Models in Ecotoxicology: Bridging the Gap Between Scientific Progress and Regulatory Applicability. Integrated Environmental Assessment and Management, 2018, 14, 601-603.	1.6	2
31	Reconciling monitoring and modeling: An appraisal of river monitoring networks based on a spatial autocorrelation approach - emerging pollutants in the Danube River as a case study. Science of the Total Environment, 2018, 618, 323-335.	3.9	26
32	Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms. EFSA Journal, 2018, 16, e05377.	0.9	69
33	Calibration and validation of toxicokinetic-toxicodynamic models for three neonicotinoids and some aquatic macroinvertebrates. Ecotoxicology, 2018, 27, 992-1007.	1.1	29
34	Toward refined environmental scenarios for ecological risk assessment of down-the-drain chemicals in freshwater environments. Integrated Environmental Assessment and Management, 2017, 13, 233-248.	1.6	28
35	Numerical evaluation of bioaccumulation and depuration kinetics of PAHs in Mytilus galloprovincialis. Environmental Pollution, 2017, 220, 1244-1250.	3.7	13
36	Modelling survival: exposure pattern, species sensitivity and uncertainty. Scientific Reports, 2016, 6, 29178.	1.6	56

ANDREAS FOCKS

#	Article	IF	CITATIONS
37	Relative influence of chemical and non-chemical stressors on invertebrate communities: a case study in the Danube River. Science of the Total Environment, 2016, 571, 1370-1382.	3.9	53
38	Developing ecological scenarios for the prospective aquatic risk assessment of pesticides. Integrated Environmental Assessment and Management, 2016, 12, 510-521.	1.6	54
39	An energetics-based honeybee nectar-foraging model used to assess the potential for landscape-level pesticide exposure dilution. PeerJ, 2016, 4, e2293.	0.9	25
40	Future water quality monitoring $\hat{a} \in$ Adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 2015, 512-513, 540-551.	3.9	243
41	In Summary. Environmental Toxicology and Chemistry, 2014, 33, 1198-1198.	2.2	0
42	Influence of Land Use Intensity on the Diversity of Ammonia Oxidizing Bacteria and Archaea in Soils from Grassland Ecosystems. Microbial Ecology, 2014, 67, 161-166.	1.4	22
43	Structural and functional response of the soil bacterial community to application of manure from difloxacin-treated pigs. FEMS Microbiology Ecology, 2014, 87, 78-88.	1.3	67
44	Integrating chemical fate and population-level effect models for pesticides at landscape scale: New options for risk assessment. Ecological Modelling, 2014, 280, 102-116.	1.2	46
45	A simulation study on effects of exposure to a combination of pesticides used in an orchard and tuber crop on the recovery time of a vulnerable aquatic invertebrate. Environmental Toxicology and Chemistry, 2014, 33, 1489-1498.	2.2	15
46	Uptake, Translocation, and Elimination in Sediment-Rooted Macrophytes: A Model-Supported Analysis of Whole Sediment Test Data. Environmental Science & Technology, 2014, 48, 12344-12353.	4.6	18
47	Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 2014, 280, 129-139.	1.2	185
48	<i>The Challenge</i> : Landscape ecotoxicology and spatially explicit risk assessment. Environmental Toxicology and Chemistry, 2014, 33, 1193-1193.	2.2	12
49	Effects of slurry from sulfadiazine- (SDZ) and difloxacin- (DIF) medicated pigs on the structural diversity of microorganisms in bulk and rhizosphere soil. Soil Biology and Biochemistry, 2013, 62, 82-91.	4.2	53
50	MODELING ENVIRONMENTAL AND HUMAN HEALTH RISKS OF VETERINARY MEDICINAL PRODUCTS APPLIED IN POND AQUACULTURE. Environmental Toxicology and Chemistry, 2013, 32, 1196-1207.	2.2	22
51	Short-term extractability of sulfadiazine after application to soils. Environmental Pollution, 2013, 172, 180-185.	3.7	23
52	Identification and dynamic modeling of biomarkers for bacterial uptake and effect of sulfonamide antimicrobials. Environmental Pollution, 2013, 172, 208-215.	3.7	10
53	To the Editor. Environmental Toxicology and Chemistry, 2013, 32, 734-735.	2.2	7
54	The use of traitsâ€based approaches and eco(toxico)logical models to advance the ecological risk assessment framework for chemicals. Integrated Environmental Assessment and Management, 2013, 9, e47-57.	1.6	37

ANDREAS FOCKS

#	Article	IF	CITATIONS
55	Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil. PLoS ONE, 2013, 8, e73536.	1.1	52
56	Accumulation of Sulfonamide Resistance Genes in Arable Soils Due to Repeated Application of Manure Containing Sulfadiazine. Applied and Environmental Microbiology, 2011, 77, 2527-2530.	1.4	168
57	Sorption of <i>ortho</i> â€Phenylphenol to Soils. Clean - Soil, Air, Water, 2011, 39, 116-120.	0.7	6
58	Mechanistic link between uptake of sulfonamides and bacteriostatic effect: Model development and application to experimental data from two soil microorganisms. Environmental Toxicology and Chemistry, 2010, 29, 1445-1452.	2.2	9
59	Dynamics and functional relevance of ammoniaâ€oxidizing archaea in two agricultural soils. Environmental Microbiology, 2009, 11, 446-456.	1.8	276
60	Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. TrAC - Trends in Analytical Chemistry, 2009, 28, 612-618.	5.8	100
61	Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biology and Biochemistry, 2008, 40, 1892-1900.	4.2	190