Hongming Lyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/67165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vagus nerve stimulation using a miniaturized wirelessly powered stimulator in pigs. Scientific Reports, 2022, 12, 8184.	3.3	11
2	A 13.56-MHz â^'25-dBm-Sensitivity Inductive Power Receiver System-on-a-Chip With a Self-Adaptive Successive Approximation Resonance Compensation Front-End for Ultra-Low-Power Medical Implants. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 80-90.	4.0	7
3	A UHF/UWB Hybrid RFID Tag With a 51-m Energy-Harvesting Sensitivity for Remote Vital-Sign Monitoring. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4886-4895.	4.6	12
4	Synchronized Biventricular Heart Pacing in a Closed-chest Porcine Model based on Wirelessly Powered Leadless Pacemakers. Scientific Reports, 2020, 10, 2067.	3.3	21
5	Stretchable Transparent Wireless Charging Coil Fabricated by Negative Transfer Printing. ACS Applied Materials & Interfaces, 2019, 11, 40677-40684.	8.0	11
6	A 915-MHz Far-Field Energy Harvester With â^22-dBm Sensitivity and 3-V Output Voltage Based on Antenna-and- Rectifier Codesign. IEEE Microwave and Wireless Components Letters, 2019, 29, 557-559.	3.2	18
7	Towards the Implementation of a Wirelessly Powered Dielectric Sensor With Digitized Output for Implantable Applications. , 2019, 3, 1-4.		6
8	A 100-M/s 2.6-pJ/pulse compact UWB impulse transmitter based on antenna-and-pulse-generator codesign. IEICE Electronics Express, 2019, 16, 20190672-20190672.	0.8	3
9	A Novel Graphene Double-Balanced Passive Mixer. , 2018, , .		1
10	Cover Image, Volume 29, Issue 11. Journal of Cardiovascular Electrophysiology, 2018, 29, i.	1.7	0
11	A 430-MHz Wirelessly Powered Implantable Pulse Generator with Intensity/Rate Control and Sub-1 <formula> <tex>\$mu\$</tex> </formula> A Quiescent Current Consumption. IEEE Transactions on Biomedical Circuits and Systems, 2018, 13, 1-1.	4.0	17
12	A Multi-site Heart Pacing Study Using Wirelessly Powered Leadless Pacemakers. , 2018, 2018, 3434-3437.		3
13	Leadless multisite pacing: A feasibility study using wireless power transfer based on Langendorff rodent heart models. Journal of Cardiovascular Electrophysiology, 2018, 29, 1588-1593.	1.7	4
14	An Energy-efficient Wirelessly Powered Millimeter-scale Neurostimulator with Optimized Inductive Loop Antenna and Custom Rectifier. , 2018, , .		2
15	Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays. Nature Communications, 2018, 9, 2035.	12.8	143
16	An Energy-Efficient Wirelessly Powered Millimeter-Scale Neurostimulator Implant Based on Systematic Codesign of an Inductive Loop Antenna and a Custom Rectifier. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 1131-1143.	4.0	38
17	Deep-submicron Graphene Field-Effect Transistors with State-of-Art fmax. Scientific Reports, 2016, 6, 35717.	3.3	26

18 Graphene neural interfaces for artifact free optogenetics. , 2016, 2016, 4204-4207.

2

#	Article	IF	CITATIONS
19	Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing. Scientific Reports, 2016, 6, 33526.	3.3	144
20	Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors. Scientific Reports, 2015, 5, 17649.	3.3	10
21	Double-Balanced Graphene Integrated Mixer with Outstanding Linearity. Nano Letters, 2015, 15, 6677-6682.	9.1	37