
Suzanne J Hodgkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6716411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of multiple sclerosis outcomes when switching to ocrelizumab. Multiple Sclerosis Journal, 2022, 28, 958-969.	1.4	6
2	Multiple Sclerosis Relapses Following Cessation of Fingolimod. Clinical Drug Investigation, 2022, 42, 355-364.	1.1	8
3	Association of Latitude and Exposure to Ultraviolet B Radiation With Severity of Multiple Sclerosis. Neurology, 2022, 98, .	1.5	12
4	Transplant Tolerance, Not Only Clonal Deletion. Frontiers in Immunology, 2022, 13, 810798.	2.2	1
5	Cerebrovascular Disease Profiles of Culturally and Linguistically Diverse Communities in South Western Sydney and New South Wales. Cerebrovascular Diseases, 2022, 51, 744-754.	0.8	0
6	Confirmed disability progression as a marker of permanent disability in multiple sclerosis. European Journal of Neurology, 2022, , .	1.7	1
7	Early Reduction of MRI Activity During 6 Months of Treatment With Cladribine Tablets for Highly Active Relapsing Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	15
8	Real-world effectiveness of cladribine for Australian patients with multiple sclerosis: An MSBase registry substudy. Multiple Sclerosis Journal, 2021, 27, 465-474.	1.4	23
9	Natalizumab, Fingolimod, and Dimethyl Fumarate Use and Pregnancy-Related Relapse and Disability in Women With Multiple Sclerosis. Neurology, 2021, 96, .	1.5	41
10	Multiple sclerosis patients have reduced resting and increased activated CD4+CD25+FOXP3+T regulatory cells. Scientific Reports, 2021, 11, 10476.	1.6	30
11	004â€Pregnancy-related relapse in natalizumab, fingolimod and dimethyl fumarate-treated women with multiple sclerosis. , 2021, , .		0
12	006â€Comparison of multiple disease modifying therapies in multiple sclerosis with marginal structural models. , 2021, , .		0
13	008â€Disease reactivation after cessation of disease-modifying therapy in relapsing-remitting multiple sclerosis. , 2021, , .		1
14	010â€Real-world experience with ocrelizumab in the MSBase registry – Australian RRMS cohort. , 2021, , .		2
15	MRI Patterns Distinguish AQP4 Antibody Positive Neuromyelitis Optica Spectrum Disorder From Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 722237.	1.1	8
16	Efficacy of Cladribine Tablets as a Treatment for People With Multiple Sclerosis: Protocol for the CLOBAS Study (Cladribine, a Multicenter, Long-term Efficacy and Biomarker Australian Study). JMIR Research Protocols, 2021, 10, e24969.	0.5	4
17	Interleukin-5 (IL-5) Therapy Prevents Allograft Rejection by Promoting CD4+CD25+ Ts2 Regulatory Cells That Are Antigen-Specific and Express IL-5 Receptor. Frontiers in Immunology, 2021, 12, 714838.	2.2	5
18	Response to treatment in NMOSD: the Australasian experience. Multiple Sclerosis and Related Disorders, 2021, 58, 103408	0.9	0

#	Article	IF	CITATIONS
19	Risk of secondary progressive multiple sclerosis: A longitudinal study. Multiple Sclerosis Journal, 2020, 26, 79-90.	1.4	52
20	Relapse Patterns in NMOSD: Evidence for Earlier Occurrence of Optic Neuritis and Possible Seasonal Variation. Frontiers in Neurology, 2020, 11, 537.	1.1	27
21	Autoantigen specific IL-2 activated CD4+CD25+T regulatory cells inhibit induction of experimental autoimmune neuritis. Journal of Neuroimmunology, 2020, 341, 577186.	1.1	11
22	The clinical profile of NMOSD in Australia and New Zealand. Journal of Neurology, 2020, 267, 1431-1443.	1.8	17
23	Alloactivation of NaÃ ⁻ ve CD4+CD8â^'CD25+T Regulatory Cells: Expression of CD8α Identifies Potent Suppressor Cells That Can Promote Transplant Tolerance Induction. Frontiers in Immunology, 2019, 10, 2397.	2.2	10
24	Trends in acute stroke presentations to an emergency department: implications for specific communities in accessing acute stroke care services. Postgraduate Medical Journal, 2019, 95, 258-264.	0.9	27
25	Clot Histopathology in Ischemic Stroke with Infective Endocarditis. Canadian Journal of Neurological Sciences, 2019, 46, 331-336.	0.3	19
26	Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 458-468.	0.9	71
27	Incidence of pregnancy and disease-modifying therapy exposure trends in women with multiple sclerosis: A contemporary cohort study. Multiple Sclerosis and Related Disorders, 2019, 28, 235-243.	0.9	35
28	Cladribine versus fingolimod, natalizumab and interferon Î ² for multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1617-1626.	1.4	36
29	Tumefactive lesions in retinal vasculopathy with cerebral leucoencephalopathy and systemic manifestations (RVCL-S): a role for neuroinflammation?. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 434-435.	0.9	10
30	Predictors of relapse and disability progression in MS patients who discontinue disease-modifying therapy. Journal of the Neurological Sciences, 2018, 391, 72-76.	0.3	22
31	Factors Associated with Stroke Misdiagnosis in the Emergency Department: A Retrospective Case-Control Study. Neuroepidemiology, 2018, 51, 123-127.	1.1	31
32	017â€Paradoxical reaction in tuberculous meningitis: a tertiary referral hospital retrospective experience of concomitant immunosuppression therapy. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, A8.1-A8.	0.9	0
33	Contribution of different relapse phenotypes to disability in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 266-276.	1.4	30
34	Highly active immunomodulatory therapy ameliorates accumulation of disability in moderately advanced and advanced multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 196-203.	0.9	49
35	Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurology, The, 2017, 16, 271-281.	4.9	134
36	Cytokines affecting CD4 + T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4 + T regulatory cells. Transplant Immunology, 2017, 42, 24-33.	0.6	16

SUZANNE J HODGKINSON

#	Article	IF	CITATIONS
37	Incidence and prevalence of NMOSD in Australia and New Zealand. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 632-638.	0.9	108
38	timing of high-efficacy disease modifying therapies for relapsing-remitting multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, e1.11-e1.	0.9	0
39	Cytokines affecting CD4 + T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4 + T regulatory cells. Transplant Immunology, 2017, 43-44, 33-41.	0.6	11
40	Towards personalized therapy for multiple sclerosis: prediction of individual treatment response. Brain, 2017, 140, 2426-2443.	3.7	94
41	Changes in Reactivity In Vitro of CD4+CD25+ and CD4+CD25â^' T Cell Subsets in Transplant Tolerance. Frontiers in Immunology, 2017, 8, 994.	2.2	8
42	Interleukin-5 Mediates Parasite-Induced Protection against Experimental Autoimmune Encephalomyelitis: Association with Induction of Antigen-Specific CD4+CD25+ T Regulatory Cells. Frontiers in Immunology, 2017, 8, 1453.	2.2	8
43	A Brain-Derived Neurotrophic Factor-Based p75 ^{NTR} Peptide Mimetic Ameliorates Experimental Autoimmune Neuritis Induced Axonal Pathology and Demyelination. ENeuro, 2017, 4, ENEURO.0142-17.2017.	0.9	16
44	Defining secondary progressive multiple sclerosis. Brain, 2016, 139, 2395-2405.	3.7	281
45	Higher latitude is significantly associated with an earlier age of disease onset in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1343-1349.	0.9	63
46	Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain, 2016, 139, 2909-2922.	3.7	114
47	Predictors of longâ€ŧerm disability accrual in relapseâ€onset multiple sclerosis. Annals of Neurology, 2016, 80, 89-100.	2.8	158
48	A new era in the treatment of multiple sclerosis. Medical Journal of Australia, 2015, 203, 139-141.	0.8	10
49	Switch to natalizumab versus fingolimod in active relapsing–remitting multiple sclerosis. Annals of Neurology, 2015, 77, 425-435.	2.8	143
50	Induction of antigen specific CD4+CD25+Foxp3+T regulatory cells from naÃ ⁻ ve natural thymic derived T regulatory cells. International Immunopharmacology, 2015, 28, 875-886.	1.7	13
51	Comparison of Switch to Fingolimod or Interferon Beta/Glatiramer Acetate in Active Multiple Sclerosis. JAMA Neurology, 2015, 72, 405.	4.5	100
52	A neuropsychological comparison of siblings with neurological versus hepatic symptoms of Wilson's Disease. Neurocase, 2015, 21, 154-161.	0.2	7
53	The Effect of Biofeedback as a Psychological Intervention in Multiple Sclerosis: A Randomized Controlled Study. International Journal of MS Care, 2015, 17, 101-108.	0.4	13
54	Interleukin-12 (IL-12p70) Promotes Induction of Highly Potent Th1-Like CD4+CD25+ T Regulatory Cells That Inhibit Allograft Rejection in Unmodified Recipients. Frontiers in Immunology, 2014, 5, 190.	2.2	45

#	Article	IF	CITATIONS
55	Anti-neuronal antibodies associated with a first episode of mania. Australian and New Zealand Journal of Psychiatry, 2014, 48, 775-777.	1.3	0
56	Fingolimod after natalizumab and the risk of short-term relapse. Neurology, 2014, 82, 1204-1211.	1.5	138
57	Therapeutic approaches to disease modifying therapy for multiple sclerosis in adults: An Australian and New Zealand perspective Part 1 Historical and established therapies. Journal of Clinical Neuroscience, 2014, 21, 1835-1846.	0.8	15
58	Therapeutic approaches to disease modifying therapy for multiple sclerosis in adults: An Australian and New Zealand perspective Part 2 New and emerging therapies and their efficacy. Journal of Clinical Neuroscience, 2014, 21, 1847-1856.	0.8	22
59	Therapeutic approaches to disease modifying therapy for multiple sclerosis in adults: An Australian and New Zealand perspective Part 3 Treatment practicalities and recommendations. Journal of Clinical Neuroscience, 2014, 21, 1857-1865.	0.8	19
60	Immune dysregulation and autoimmunity in bipolar disorder: Synthesis of the evidence and its clinical application. Australian and New Zealand Journal of Psychiatry, 2013, 47, 1136-1151.	1.3	76
61	Cytokines affecting CD4+ T regulatory cells in transplant tolerance. Interleukin-4 does not maintain alloantigen specific CD4+CD25+ Treg. Transplant Immunology, 2013, 29, 51-59.	0.6	16
62	Prevalence of positive syphilis serology and meningovascular neurosyphilis in patients admitted with stroke and TIA from a culturally diverse population (2005–09). Journal of Clinical Neuroscience, 2013, 20, 943-947.	0.8	38
63	Do Natural T Regulatory Cells become Activated to Antigen Specific T Regulatory Cells in Transplantation and in Autoimmunity?. Frontiers in Immunology, 2013, 4, 208.	2.2	28
64	IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity. Blood, 2012, 119, 4441-4450.	0.6	81
65	Distinct regulatory CD4+T cell subsets; differences between naÃ⁻ve and antigen specific T regulatory cells. Current Opinion in Immunology, 2011, 23, 641-647.	2.4	75
66	Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis. Journal of Neuroimmunology, 2010, 229, 98-106.	1.1	16
67	Validation of Emergency and Final Diagnosis Coding in Transient Ischemic Attack: South Western Sydney Transient Ischemic Attack Study. Neuroepidemiology, 2010, 35, 53-58.	1.1	27
68	Donor IL-4-treatment induces alternatively activated liver macrophages and IDO-expressing NK cells and promotes rat liver allograft acceptance. Transplant Immunology, 2010, 22, 172-178.	0.6	24
69	Decreasing presentations of seizures to emergency departments in a large Australian population. Epilepsy and Behavior, 2009, 16, 475-478.	0.9	1
70	Alloantigen specific T regulatory cells in transplant tolerance. International Immunopharmacology, 2009, 9, 570-574.	1.7	19
71	CD4+CD25+ T cells alloactivated ex vivo by IL-2 or IL-4 become potent alloantigen-specific inhibitors of rejection with different phenotypes, suggesting separate pathways of activation by Th1 and Th2 responses. Blood, 2009, 113, 479-487.	0.6	48
72	Studies on naÃ⁻ve CD4+CD25+T cells inhibition of naÃ⁻ve CD4+CD25â^'T cells in mixed lymphocyte cultures. Transplant Immunology, 2008, 18, 291-301.	0.6	26

SUZANNE J HODGKINSON

#	Article	IF	CITATIONS
73	Heart allograft acceptance induced by anti-CD3 antibody in high-responder rats: Effect on foxp3 and cytokine expression and graft infiltration. Transplant Immunology, 2008, 19, 20-24.	0.6	5
74	Outcomes of patients with transient ischaemic attack after hospital admission or discharge from the emergency department. Medical Journal of Australia, 2008, 189, 9-12.	0.8	61
75	Induction of Passive Heymann Nephritis in Complement Component 6-Deficient PVG Rats. Journal of Immunology, 2007, 179, 172-178.	0.4	55
76	Transfer of Allograft Specific Tolerance Requires CD4+CD25+T Cells but Not Interleukin-4 or Transforming Growth Factor–β and Cannot Induce Tolerance to Linked Antigens. Transplantation, 2007, 83, 1075-1084.	0.5	20
77	Transplant Tolerance Associated With a Th1 Response and Not Broken by IL-4, IL-5, and TGF-β Blockade or Th1 Cytokine Administration. Transplantation, 2007, 83, 764-773.	0.5	16
78	IL-13 prolongs allograft survival: Association with inhibition of macrophage cytokine activation. Transplant Immunology, 2007, 17, 178-186.	0.6	34
79	C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nature Genetics, 2007, 39, 1068-1070.	9.4	366
80	The cellular basis of cardiac allograft rejection. IX. Ratio of naÃ⁻ve CD4+CD25+ T cells/CD4+CD25â^' T cells determines rejection or tolerance. Transplant Immunology, 2006, 15, 311-318.	0.6	31
81	Posttransplant Interleukin-4 Treatment Converts Rat Liver Allograft Tolerance to Rejection. Transplantation, 2005, 79, 1116-1120.	0.5	13
82	Attenuation of Experimental Allergic Encephalomyelitis in Complement Component 6-Deficient Rats Is Associated with Reduced Complement C9 Deposition, P-Selectin Expression, and Cellular Infiltrate in Spinal Cords. Journal of Immunology, 2002, 168, 4293-4300.	0.4	58
83	Should all patients with an initial diagnosis of multiple sclerosis be treated with Beta Interferon?. Journal of Clinical Neuroscience, 2001, 8, 378-379.	0.8	1
84	Mycophenolate mofetil treatment accelerates recovery from experimental allergic encephalomyelitis. International Immunopharmacology, 2001, 1, 1709-1723.	1.7	27
85	IL-4 Therapy Prevents the Development of Proteinuria in Active Heymann Nephritis by Inhibition of Tc1 Cells. Journal of Immunology, 2001, 167, 3725-3733.	0.4	29
86	Reversal of experimental allergic encephalomyelitis with non-mitogenic, non-depleting anti-CD3 mAb therapy with a preferential effect on Th1 cells that is augmented by IL-4. International Immunology, 2001, 13, 1109-1120.	1.8	47
87	Tumor necrosis factor α and interleukin-6 mRNA expression in neonatal Lewis rat Schwann cells and a neonatal rat Schwann cell line following interferon γ stimulation. Journal of Neuroimmunology, 1996, 71, 65-71.	1.1	46
88	Transfer of experimental allergic neuritis by intra neural injection of sensitized lymphocytes. Journal of the Neurological Sciences, 1994, 123, 162-172.	0.3	15