Kosta M Jovanović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6716316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virtual laboratories for education in science, technology, and engineering: A review. Computers and Education, 2016, 95, 309-327.	8.3	513
2	Toward Anthropomimetic Robotics: Development, Simulation, and Control of a Musculoskeletal Torso. Artificial Life, 2013, 19, 171-193.	1.3	71
3	Virtual Mechatronic/Robotic laboratory – A step further in distance learning. Computers and Education, 2010, 55, 465-475.	8.3	48
4	The Puller-Follower Control of Compliant and Noncompliant Antagonistic Tendon Drives in Robotic Systems. International Journal of Advanced Robotic Systems, 2011, 8, 69.	2.1	43
5	Cloud-Based Multi-Robot Path Planning in Complex and Crowded Environment with Multi-Criteria Decision Making using Full Consistency Method. Symmetry, 2019, 11, 1241.	2.2	35
6	Decoupled nonlinear adaptive control of position and stiffness for pneumatic soft robots. International Journal of Robotics Research, 2021, 40, 277-295.	8.5	25
7	An Input Observer-Based Stiffness Estimation Approach for Flexible Robot Joints. IEEE Robotics and Automation Letters, 2020, 5, 1843-1850.	5.1	15
8	Digital Innovation Hubs in Health-Care Robotics Fighting COVID-19: Novel Support for Patients and Health-Care Workers Across Europe. IEEE Robotics and Automation Magazine, 2021, 28, 40-47.	2.0	14
9	The Puller-Follower Control Concept in the Multi-Jointed Robot Body with Antagonistically Coupled Compliant Drives. , 2011, , .		14
10	Laboratory Learning Objectives Measurement: Relationships Between Student Evaluation Scores and Perceived Learning. IEEE Transactions on Education, 2021, 64, 163-171.	2.4	13
11	Hill's and Huxley's muscle models - tools for simulations in biomechanics. Serbian Journal of Electrical Engineering, 2015, 12, 53-67.	0.4	13
12	Remote, simulation or traditional engineering teaching laboratory: a systematic literature review of assessment implementations to measure student achievement or learning. European Journal of Engineering Education, 2021, 46, 1141-1162.	2.3	13
13	Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching. , 2021, 5, 1934-1939.		12
14	Human to humanoid motion conversion for dual-arm manipulation tasks. Robotica, 2018, 36, 1167-1187.	1.9	10
15	Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching. , 2021, , .		10
16	Anthropomimetic robot with passive compliance - Contact dynamics and control. , 2011, , .		9
17	Distance learning and skill acquisition in engineering sciences. Multicultural Education and Technology Journal, 2013, 7, 64-88.	2.0	9
18	Feedforward neural network for controlling qbmove maker pro variable stiffness actuator. , 2016, , .		8

Κοςτα Μ Ιονανονιć

#	Article	IF	CITATIONS
19	Balance Analysis of the Mobile Anthropomimetic Robot Under Disturbances – ZMP Approach. International Journal of Advanced Robotic Systems, 2013, 10, 206.	2.1	7
20	Collision Detection on Industrial Robots in Repetitive Tasks Using Modified Dynamic Time Warping. Robotica, 2020, 38, 1717-1736.	1.9	7
21	Control of Compliant Anthropomimetic Robot Joint. , 2010, , .		6
22	Development of Virtual Laboratory for Mechatronic Systems. Advances in Intelligent Systems and Computing, 2017, , 622-630.	0.6	5
23	Cascade Control of Antagonistic VSA—An Engineering Control Approach to a Bioinspired Robot Actuator. Frontiers in Neurorobotics, 2019, 13, 69.	2.8	5
24	KUKA LWR Robot Cartesian Stiffness Control Based on Kinematic Redundancy. Advances in Intelligent Systems and Computing, 2020, , 310-318.	0.6	5
25	Biologically-Inspired Control of a Compliant Anthropomimetic Robot. , 2010, , .		5
26	Heuristic Machine-Learning Approach to the Control of an Anthropomimetic Robot Arm. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 301-306.	0.4	4
27	Tip-over stability examination of a compliant anthropomimetic mobile robot. , 2012, , .		4
28	End-effector Cartesian stiffness shaping - sequential least squares programming approach. Serbian Journal of Electrical Engineering, 2021, 18, 1-14.	0.4	4
29	Modeling and Control of a Compliantly Engineered Anthropomimetic Robot in Contact Tasks. , 2011, , .		4
30	Autonomous Exploration Based on Multi-Criteria Decision-Making and Using D* Lite Algorithm. Intelligent Automation and Soft Computing, 2022, 32, 1369-1386.	2.1	4
31	Assessment of the Human-Robot Collaborative Polishing Task by Using EMG Sensors and 3D Pose Estimation. Mechanisms and Machine Science, 2022, , 564-570.	0.5	4
32	Neural networks in feedforward control of a robot arm driven by antagonistically coupled drives. , 2012, , .		3
33	Toward optimal mapping of human dual-arm motion to humanoid motion for tasks involving contact with the environment. International Journal of Advanced Robotic Systems, 2018, 15, 172988141875737.	2.1	3
34	Feedback linearization for decoupled position/stiffness control of bidirectional antagonistic drives. Facta Universitatis - Series Electronics and Energetics, 2018, 31, 51-61.	0.9	3
35	Cascade Gain Scheduling Control of Antagonistic Actuators Based on System Identification. Mechanisms and Machine Science, 2019, , 425-435.	0.5	3
36	Force/Torque-Sensorless Joint Stiffness Estimation in Articulated Soft Robots. IEEE Robotics and Automation Letters, 2022, 7, 7036-7043.	5.1	3

Κοςτα Μ Ιονανονιć

#	Article	IF	CITATIONS
37	Editorial: Human-Like Advances in Robotics: Motion, Actuation, Sensing, Cognition and Control. Frontiers in Neurorobotics, 2019, 13, 85.	2.8	2
38	Maximizing the End-Effector Cartesian Stiffness Range for Kinematic Redundant Robot with Compliance. Mechanisms and Machine Science, 2020, , 208-217.	0.5	2
39	Control of compliant anthropomimetic robot joint. Serbian Journal of Electrical Engineering, 2011, 8, 85-95.	0.4	2
40	Robust and Decoupled Position and Stiffness Control for Electrically-Driven Articulated Soft Robots. IEEE Robotics and Automation Letters, 2022, 7, 9059-9066.	5.1	2
41	Dynamics based modeling of wheeled platform for humanoid robot torso. Serbian Journal of Electrical Engineering, 2016, 13, 335-345.	0.4	1
42	Influence of Unmodelled External Forces on the Quality of Collision Detection. Advances in Intelligent Systems and Computing, 2020, , 319-328.	0.6	1
43	Feedforward Control Approaches to Bidirectional Antagonistic Actuators Based on Learning. Advances in Intelligent Systems and Computing, 2020, , 337-345.	0.6	0
44	How to Control Anthropomimetic Robot: Engineering and Cognitive Approach. Mechanisms and Machine Science, 2014, , 299-313.	0.5	0
45	Influence of external disturbances to dynamic balance of the semi-anthropomimetic robot. Serbian Journal of Electrical Engineering, 2014, 11, 145-158.	0.4	0
46	Fully Integrated Torque-Based Collision Detection in Periodic Tasks for Industrial Robots with Closed Control Architecture. Mechanisms and Machine Science, 2019, , 71-81.	0.5	0
47	Comparison of Model-Based Simultaneous Position and Stiffness Control Techniques for Pneumatic Soft Robots. Mechanisms and Machine Science, 2020, , 218-226.	0.5	Ο