
Adrienne A Boire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6716170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leptomeningeal metastatic cells adopt two phenotypic states. Cancer Reports, 2022, 5, e1236.	0.6	26
2	Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 2022, 185, 563-575.e11.	13.5	223
3	Incidence of brain metastases in patients with early HER2-positive breast cancer receiving neoadjuvant chemotherapy with trastuzumab and pertuzumab. Npj Breast Cancer, 2022, 8, 37.	2.3	9
4	Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia, 2022, 28, 100790.	2.3	5
5	Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro-Oncology, 2022, 24, 1613-1646.	0.6	39
6	Randomized Phase II Trial of Proton Craniospinal Irradiation Versus Photon Involved-Field Radiotherapy for Patients With Solid Tumor Leptomeningeal Metastasis. Journal of Clinical Oncology, 2022, 40, 3858-3867.	0.8	47
7	Leptomeningeal Metastases: New Opportunities in the Modern Era. Neurotherapeutics, 2022, 19, 1782-1798.	2.1	9
8	Clinical trial of proton craniospinal irradiation for leptomeningeal metastases. Neuro-Oncology, 2021, 23, 134-143.	0.6	56
9	Inflammatory Leptomeningeal Cytokines Mediate COVID-19 Neurologic Symptoms in Cancer Patients. Cancer Cell, 2021, 39, 276-283.e3.	7.7	54
10	Cytotoxic lymphocytes target characteristic biophysical vulnerabilities in cancer. Immunity, 2021, 54, 1037-1054.e7.	6.6	56
11	Clinical Experience of Cerebrospinal Fluid–Based Liquid Biopsy Demonstrates Superiority of Cell-Free DNA over Cell Pellet Genomic DNA for Molecular Profiling. Journal of Molecular Diagnostics, 2021, 23, 742-752.	1.2	17
12	Medulloblastoma uses GABA transaminase to survive in the cerebrospinal fluid microenvironment and promote leptomeningeal dissemination. Cell Reports, 2021, 35, 109302.	2.9	19
13	Characterization, isolation, and in vitro culture of leptomeningeal fibroblasts. Journal of Neuroimmunology, 2021, 361, 577727.	1.1	5
14	Advances in the diagnosis, evaluation, and management of leptomeningeal disease. Neuro-Oncology Advances, 2021, 3, v86-v95.	0.4	10
15	Quantitative cerebrospinal fluid circulating tumor cells are a potential biomarker of response for proton craniospinal irradiation for leptomeningeal metastasis. Neuro-Oncology Advances, 2021, 3, vdab181.	0.4	8
16	A retrospective, quantitative assessment of disease burden in patients with leptomeningeal metastases from non-small-cell lung cancer. Neuro-Oncology, 2020, 22, 675-683.	0.6	39
17	Brain metastasis. Nature Reviews Cancer, 2020, 20, 4-11.	12.8	221
18	Palliation for all people: alleviating racial disparities in supportive care for brain metastases. Neuro-Oncology, 2020, 22, 1239-1240.	0.6	3

Adrienne A Boire

#	Article	IF	CITATIONS
19	Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science, 2020, 369, 276-282.	6.0	146
20	Cerebrospinal fluid circulating tumor cells as a quantifiable measurement of leptomeningeal metastases in patients with HER2 positive cancer. Journal of Neuro-Oncology, 2020, 148, 599-606.	1.4	50
21	Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Research, 2020, 80, 4314-4323.	0.4	51
22	Leptomeningeal disease in melanoma patients: An update to treatment, challenges, and future directions. Pigment Cell and Melanoma Research, 2020, 33, 527-541.	1.5	36
23	The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell, 2020, 181, 236-249.	13.5	334
24	Molecular Mechanisms in Brain Metastasis. , 2020, , 31-41.		0
25	Metastasis to the Central Nervous System. CONTINUUM Lifelong Learning in Neurology, 2020, 26, 1584-1601.	0.4	1
26	Leptomeningeal Disease and the Role of Intrathecal Therapy. , 2020, , 169-186.		1
27	Genomic Characterization of a RET Inhibitor–Resistant RET Fusion–Positive Lung Cancer by CSF Cell-Free DNA Hybrid Capture–Based Sequencing. JCO Precision Oncology, 2020, 4, 1361-1366.	1.5	0
28	Genomic Correlates of Disease Progression and Treatment Response in Prospectively Characterized Gliomas. Clinical Cancer Research, 2019, 25, 5537-5547.	3.2	107
29	Frequency and outcomes of brain metastases in patients with <i>HER2</i> â€mutant lung cancers. Cancer, 2019, 125, 4380-4387.	2.0	51
30	Liquid biopsy in central nervous system metastases: a RANO review and proposals for clinical applications. Neuro-Oncology, 2019, 21, 571-584.	0.6	114
31	Tumour Dormancy and Reawakening: Opportunities and Challenges. Trends in Cancer, 2019, 5, 762-765.	3.8	23
32	The Evolving Landscape of Brain Metastasis. Trends in Cancer, 2018, 4, 176-196.	3.8	194
33	Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nature Cell Biology, 2018, 20, 966-978.	4.6	186
34	Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell, 2017, 168, 1101-1113.e13.	13.5	219
35	Cerebrospinal fluid circulating tumor cells: a novel tool to diagnose leptomeningeal metastases from epithelial tumors. Neuro-Oncology, 2017, 19, 1248-1254.	0.6	79
36	Characteristics and Outcomes of Patients With Breast Cancer With Leptomeningeal Metastasis. Clinical Breast Cancer, 2017, 17, 23-28.	1.1	91

Adrienne A Boire

#	Article	IF	CITATIONS
37	Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 2016, 533, 493-498.	13.7	677
38	Evaluating Cancer of the Central Nervous System Through Next-Generation Sequencing of Cerebrospinal Fluid. Journal of Clinical Oncology, 2016, 34, 2404-2415.	0.8	297
39	BM-06 * MECHANISTIC INVESTIGATIONS OF LEPTOMENINGEAL METASTASIS FROM SOLID TUMORS. Neuro-Oncology, 2014, 16, v33-v33.	0.6	2
40	Molecular Interactions in the Development of Brain Metastases. International Journal of Molecular Sciences, 2013, 14, 17157-17167.	1.8	10
41	Targeted therapy in the treatment of malignant gliomas. OncoTargets and Therapy, 2009, 2, 115.	1.0	5
42	Blockade of PAR1 Signaling with Cell-Penetrating Pepducins Inhibits Akt Survival Pathways in Breast Cancer Cells and Suppresses Tumor Survival and Metastasis. Cancer Research, 2009, 69, 6223-6231.	0.4	131
43	Platelet Matrix Metalloprotease-1 Mediates Thrombogenesis by Activating PAR1 at a Cryptic Ligand Site. Cell, 2009, 137, 332-343.	13.5	218
44	Emerging therapies for malignant glioma. Expert Review of Anticancer Therapy, 2007, 7, S29-S36.	1.1	13
45	Site-specific Effects of Peptide Lipidation on β-Amyloid Aggregation and Cytotoxicity. Journal of Biological Chemistry, 2007, 282, 36987-36997.	1.6	19
46	Spatial Separation of β-Sheet Domains of β-Amyloid: Disruption of Each β-Sheet byN-Methyl Amino Acidsâ€. Biochemistry, 2006, 45, 9485-9495.	1.2	42
47	PAR1 Is a Matrix Metalloprotease-1 Receptor that Promotes Invasion and Tumorigenesis of Breast Cancer Cells. Cell, 2005, 120, 303-313.	13.5	774
48	Pollen recovery in atmospheric samples collected with the Rotorod Sampler over multiple-day periods such as weekends. Annals of Allergy, Asthma and Immunology, 1999, 83, 217-221.	0.5	9
49	A summary of the atmospheric surveys published in the United States allergy literature, 1966-1996. Annals of Allergy, Asthma and Immunology, 1999, 82, 543-547.	0.5	6