
Mark Winey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6716066/publications.pdf Version: 2024-02-01

MADE WINEY

#	Article	lF	CITATIONS
1	THE BUDDING YEAST SPINDLE POLE BODY: Structure, Duplication, and Function. Annual Review of Cell and Developmental Biology, 2004, 20, 1-28.	4.0	256
2	The MPS1 Family of Protein Kinases. Annual Review of Biochemistry, 2012, 81, 561-585.	5.0	179
3	New <i>Tetrahymena</i> basal body protein components identify basal body domain structure. Journal of Cell Biology, 2007, 178, 905-912.	2.3	157
4	<i>MOB1</i> , an Essential Yeast Gene Required for Completion of Mitosis and Maintenance of Ploidy. Molecular Biology of the Cell, 1998, 9, 29-46.	0.9	156
5	Conventional transmission electron microscopy. Molecular Biology of the Cell, 2014, 25, 319-323.	0.9	155
6	Anaphase Inactivation of the Spindle Checkpoint. Science, 2006, 313, 680-684.	6.0	118
7	Basal body stability and ciliogenesis requires the conserved component Poc1. Journal of Cell Biology, 2009, 187, 905-920.	2.3	115
8	Mitotic Spindle Form and Function. Genetics, 2012, 190, 1197-1224.	1.2	115
9	Centriole structure. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130457.	1.8	101
10	DBF2 Protein Kinase Binds to and Acts through the Cell Cycle-Regulated MOB1 Protein. Molecular and Cellular Biology, 1998, 18, 2100-2107.	1.1	98
11	Basal Body Duplication and Maintenance Require One Member of the Tetrahymena thermophila Centrin Gene Family. Molecular Biology of the Cell, 2005, 16, 3606-3619.	0.9	90
12	Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nature Cell Biology, 2001, 3, 38-42.	4.6	89
13	The kinetochore protein, <i>CENPF</i> , is mutated in human ciliopathy and microcephaly phenotypes. Journal of Medical Genetics, 2015, 52, 147-156.	1.5	75
14	Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. ELife, 2015, 4, .	2.8	64
15	Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Molecular Biology of the Cell, 2012, 23, 4820-4832.	0.9	62
16	The yeast protein kinase Mps1p is required for assembly of the integral spindle pole body component Spc42p. Journal of Cell Biology, 2002, 156, 453-465.	2.3	60
17	New Alleles of the YeastMPS1Gene Reveal Multiple Requirements in Spindle Pole Body Duplication. Molecular Biology of the Cell, 1998, 9, 759-774.	0.9	57
18	Basal Body Assembly in Ciliates: The Power of Numbers. Traffic, 2009, 10, 461-471.	1.3	57

MARK WINEY

#	Article	IF	CITATIONS
19	Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene, 2002, 21, 6161-6169.	2.6	55
20	The Two SAS-6 Homologs in <i>Tetrahymena thermophila</i> Have Distinct Functions in Basal Body Assembly. Molecular Biology of the Cell, 2009, 20, 1865-1877.	0.9	49
21	Three-dimensional Ultrastructure of Saccharomyces cerevisiae Meiotic Spindles. Molecular Biology of the Cell, 2005, 16, 1178-1188.	0.9	48
22	Novel Role for a <i>Saccharomyces cerevisiae</i> Nucleoporin, Nup170p, in Chromosome Segregation. Genetics, 2001, 157, 1543-1553.	1.2	48
23	<i>Tetrahymena</i> RIB72A and RIB72B are microtubule inner proteins in the ciliary doublet microtubules. Molecular Biology of the Cell, 2018, 29, 2566-2577.	0.9	47
24	The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Molecular Biology of the Cell, 2017, 28, 3298-3314.	0.9	44
25	Licensing of Yeast Centrosome Duplication Requires Phosphoregulation of Sfi1. PLoS Genetics, 2014, 10, e1004666.	1.5	37
26	The two domains of centrin have distinct basal body functions in <i>Tetrahymena</i> . Molecular Biology of the Cell, 2011, 22, 2221-2234.	0.9	31
27	<i>Tetrahymena</i> Poc1 ensures proper intertriplet microtubule linkages to maintain basal body integrity. Molecular Biology of the Cell, 2016, 27, 2394-2403.	0.9	29
28	Yeast Mps1p Phosphorylates the Spindle Pole Component Spc110p in the N-terminal Domain. Journal of Biological Chemistry, 2001, 276, 17958-17967.	1.6	28
29	Chromosomal attachments set length and microtubule number in the <i>Saccharomyces cerevisiae</i> mitotic spindle. Molecular Biology of the Cell, 2014, 25, 4034-4048.	0.9	28
30	Motile Cilia: Innovation and Insight From Ciliate Model Organisms. Frontiers in Cell and Developmental Biology, 2019, 7, 265.	1.8	28
31	Interaction of CK1Î′ with γTuSC ensures proper microtubule assembly and spindle positioning. Molecular Biology of the Cell, 2015, 26, 2505-2518.	0.9	27
32	Electron Tomography and Immuno-labeling of Tetrahymena thermophila Basal Bodies. Methods in Cell Biology, 2010, 96, 117-141.	0.5	26
33	High Pressure Freezing, Electron Microscopy, and Immuno-Electron Microscopy of Tetrahymena thermophila Basal Bodies. Methods in Molecular Biology, 2009, 586, 227-241.	0.4	26
34	Ubiquitin Ligase Ufd2 Is Required for Efficient Degradation of Mps1 Kinase. Journal of Biological Chemistry, 2011, 286, 43660-43667.	1.6	22
35	Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression. Developmental Biology, 2014, 395, 287-298.	0.9	22
36	Cytological Analysis of Tetrahymena thermophila. Methods in Cell Biology, 2012, 109, 357-378.	0.5	17

MARK WINEY

#	Article	IF	CITATIONS
37	The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Molecular Biology of the Cell, 2012, 23, 4766-4777.	0.9	17
38	Microtubule glycylation promotes basal body attachment to the cell cortex. Journal of Cell Science, 2019, 132, .	1.2	17
39	Electron cryo-tomography structure of axonemal doublet microtubule from <i>Tetrahymena thermophila</i> . Life Science Alliance, 2022, 5, e202101225.	1.3	17
40	Mechanisms of genetic instability revealed by analysis of yeast spindle pole body duplication. Biology of the Cell, 1999, 91, 439-450.	0.7	16
41	Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. Developmental Biology, 2016, 411, 257-265.	0.9	16
42	Sfr13 is a member of a large family of asymmetrically 1 localized Sfi1-repeat proteins and is important for basal body separation and stability in <i>Tetrahymena thermophila</i> . Journal of Cell Science, 2013, 126, 1659-71.	1.2	14
43	Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus. Scientific Reports, 2015, 5, 10283.	1.6	14
44	Membrane Dynamics at the Nuclear Exchange Junction during Early Mating (One to Four Hours) in the Ciliate Tetrahymena thermophila. Eukaryotic Cell, 2015, 14, 116-127.	3.4	14
45	Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null <i>Tetrahymena</i> cells reveals functional MIPs. Molecular Biology of the Cell, 2021, 32, br8.	0.9	13
46	<i>Tetrahymena</i> Poc5 is a transient basal body component that is important for basal body maturation. Journal of Cell Science, 2020, 133, .	1.2	6
47	Microtubule-associated proteins and motors required for ectopic microtubule array formation in <i>Saccharomyces cerevisiae</i> . Genetics, 2021, 218, .	1.2	5
48	Sfr1, a Tetrahymena thermophila Sfi1 Repeat Protein, Modulates the Production of Cortical Row Basal Bodies. MSphere, 2016, 1, .	1.3	4
49	Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Molecular Biology of the Cell, 2018, 29, 2280-2291.	0.9	3
50	Mechanisms of genetic instability revealed by analysis of yeast spindle pole body duplication. Biology of the Cell, 1999, 91, 439-450.	0.7	3
51	Yeast pericentrin/Spc110 contains multiple domains required for tethering the γ-tubulin complex to the centrosome. Molecular Biology of the Cell, 2020, 31, 1437-1452.	0.9	2
52	The Budding Yeast Spindle Pole Body: A Centrosome Analog. , 2005, , 43-69.		1
53	Cryopreparation and Electron Tomography of Yeast Cells. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot085589.	0.2	1
54	Building Cell Structures in Three Dimensions: Electron Tomography Methods for Budding Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.top077685.	0.2	0