
Shinichi Akizuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/671564/publications.pdf Version: 2024-02-01

SHINICHI AKIZIIKI

#	Article	IF	CITATIONS
1	Influence of lignocellulosic components on the anaerobic digestibility of aquatic weeds: Comparison with terrestrial crops. Industrial Crops and Products, 2022, 178, 114576.	2.5	6
2	Advanced light-tolerant microalgae-nitrifying bacteria consortia for stable ammonia removal under strong light irradiation using light-shielding hydrogel. Chemosphere, 2022, 297, 134252.	4.2	6
3	Effect of carbon to nitrogen ratio of food waste and short resting period on microbial accumulation during anaerobic digestion. Biomass and Bioenergy, 2022, 162, 106481.	2.9	17
4	Nitrification of anaerobic digestate using a consortium of microalgae and nitrifiers in an open photobioreactor with moving bed carriers. Chemosphere, 2021, 263, 127948.	4.2	15
5	Cumulative effects of titanium dioxide nanoparticles in UASB process during wastewater treatment. Journal of Environmental Management, 2021, 277, 111428.	3.8	6
6	Treatment of piggery wastewater with an integrated microalgae-nitrifiers process: current status and prospects. , 2021, , 595-616.		0
7	Mechanism of cell proliferation during starvation in a continuous stirred tank anaerobic reactor treating food waste. Bioprocess and Biosystems Engineering, 2021, 44, 1659-1669.	1.7	1
8	Effect of ammonia concentration on a microalgal-nitrifying bacterial photobioreactor treating anaerobic digester effluent. Biochemical Engineering Journal, 2021, 173, 108057.	1.8	3
9	Development of a gas-permeable bag photobioreactor for energy-efficient oxygen removal from algal culture. Algal Research, 2021, 60, 102543.	2.4	9
10	Seasonal Changes in the Chemical Composition and Anaerobic Digestibility of Harvested Submerged Macrophytes. Bioenergy Research, 2020, 13, 683-692.	2.2	5
11	Effects of different light conditions on ammonium removal in a consortium of microalgae and partial nitrifying granules. Water Research, 2020, 171, 115445.	5.3	45
12	Simultaneous biological nitrification and desulfurization treatment of ammonium and sulfide-rich wastewater: Effectiveness of a sequential batch operation. Chemosphere, 2020, 244, 125381.	4.2	23
13	pH treatments in continuous cultivation to maximize microalgal production and nutrient removal from anaerobic digestion effluent of aquatic macrophytes. Journal of Applied Phycology, 2020, 32, 3349-3362.	1.5	12
14	Development of light-shielding hydrogel for nitrifying bacteria to prevent photoinhibition under strong light irradiation. Process Biochemistry, 2020, 94, 359-364.	1.8	5
15	Novel wet-solid states serial anaerobic digestion process for enhancing methane recovery of aquatic plant biomass. Science of the Total Environment, 2020, 730, 138993.	3.9	5
16	Application of nitrifying granular sludge for stable ammonium oxidation under intensive light. Biochemical Engineering Journal, 2020, 160, 107631.	1.8	8
17	Anaerobic digestion effluent treatment using microalgae and nitrifiers in an outdoor raceway pond with fluidized carriers. Water Science and Technology, 2020, 82, 1081-1091.	1.2	2
18	Conditions for continuous cultivation of Chlorella sorokiniana and nutrient removal from anaerobic digestion effluent of aquatic macrophytes. International Biodeterioration and Biodegradation, 2020, 149, 104923.	1.9	9

SHINICHI AKIZUKI

#	Article	IF	CITATIONS
19	Microalgae cultivation using undiluted anaerobic digestate by introducing aerobic nitrification–desulfurization treatment. Water Science and Technology, 2020, 82, 1070-1080.	1.2	17
20	Microalgal-nitrifying bacterial consortium for energy-saving ammonia removal from anaerobic digestate of slaughterhouse wastewater. Journal of Water Process Engineering, 2019, 31, 100753.	2.6	29
21	A multifunctional single-stage process for the effective methane recovery and denitrification of intermittently discharged wastes. International Biodeterioration and Biodegradation, 2018, 127, 201-208.	1.9	5
22	An anaerobic-aerobic sequential batch process with simultaneous methanogenesis and short-cut denitrification for the treatment of marine biofoulings. Waste Management, 2018, 74, 168-176.	3.7	11
23	Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from Malaysia. Marine Pollution Bulletin, 2018, 136, 135-140.	2.3	132
24	Stable nitrification under sulfide supply in a sequencing batch reactor with a long fill period. Journal of Water Process Engineering, 2018, 25, 190-194.	2.6	15
25	Formation of simultaneous denitrification and methanogenesis granules in biological wastewater treatment. Process Biochemistry, 2017, 58, 252-257.	1.8	22
26	An anaerobic-aerobic sequential batch system using simultaneous organic and nitrogen removal to treat intermittently discharged organic solid wastes. Process Biochemistry, 2016, 51, 1264-1273.	1.8	11
27	Effects of substrate COD/NO2â^'-N ratio on simultaneous methanogenesis and short-cut denitrification in the treatment of blue mussel using acclimated sludge. Biochemical Engineering Journal, 2015, 99, 16-23.	1.8	10
	Effect of <mml:math <="" altimg="si1.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>·mosle/mn</td><td>nl·mox cmml·</td></mml:math>	·mosle/mn	nl·mox cmml·

overflow="scroll"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>COD</mml:mtext></mml:mrow><mml:mo>/</mml:mo><mml:mo>/</mml:mc>><mml:mc>></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>