Alba Cortés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6715599/publications.pdf

Version: 2024-02-01

30 papers

810 citations

687363 13 h-index 28 g-index

30 all docs

30 docs citations

30 times ranked

1055 citing authors

#	Article	IF	CITATIONS
1	Parasitic helminths and the host microbiome – a missing â€~extracellular vesicle-sized' link?. Trends in Parasitology, 2022, 38, 737-747.	3.3	12
2	Helminth Microbiota Profiling Using Bacterial 16S rRNA Gene Amplicon Sequencing: From Sampling to Sequence Data Mining. Methods in Molecular Biology, 2021, 2369, 263-298.	0.9	1
3	Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biology, 2021, 19, 74.	3.8	17
4	Vaccination against the brown stomach worm, Teladorsagia circumcincta, followed by parasite challenge, induces inconsistent modifications in gut microbiota composition of lambs. Parasites and Vectors, 2021, 14, 189.	2.5	6
5	Gut-microbiota-derived extracellular vesicles: Overlooked mediators in host–helminth interactions?. Trends in Parasitology, 2021, 37, 690-693.	3.3	5
6	A bug's life: Delving into the challenges of helminth microbiome studies. PLoS Neglected Tropical Diseases, 2020, 14, e0008446.	3.0	9
7	Baseline Gut Microbiota Composition Is Associated With Schistosoma mansoni Infection Burden in Rodent Models. Frontiers in Immunology, 2020, 11, 593838.	4.8	21
8	Infection with the sheep gastrointestinal nematode Teladorsagia circumcincta increases luminal pathobionts. Microbiome, 2020, 8, 60.	11.1	40
9	MICHELINdb: a web-based tool for mining of helminth-microbiota interaction datasets, and a meta-analysis of current research. Microbiome, 2020, 8, 10.	11.1	27
10	Form and Function in theÂDigenea. Advances in Experimental Medicine and Biology, 2019, 1154, 3-20.	1.6	1
11	Helminths and microbes within the vertebrate gut – not all studies are created equal. Parasitology, 2019, 146, 1371-1378.	1.5	40
12	Secreted cathepsin L-like peptidases are involved in the degradation of trapped antibodies on the surface of Echinostoma caproni. Parasitology Research, 2019, 118, 3377-3386.	1.6	6
13	Helminth-microbiota cross-talk \hat{a} \in "A journey through the vertebrate digestive system. Molecular and Biochemical Parasitology, 2019, 233, 111222.	1.1	49
14	$ROR\hat{I}^3t+$ Treg to Th17 ratios correlate with susceptibility to Giardia infection. Scientific Reports, 2019, 9, 20328.	3.3	14
15	Adaptation of the secretome of Echinostoma caproni may contribute to parasite survival in a Th1 milieu. Parasitology Research, 2018, 117, 947-957.	1.6	4
16	Classic Models for New Perspectives: Delving into Helminth–Microbiota–Immune System Interactions. Trends in Parasitology, 2018, 34, 640-654.	3.3	29
17	Effects of dietary intake of garlic on intestinal trematodes. Parasitology Research, 2017, 116, 2119-2129.	1.6	8
18	Th2 and Th1 Responses: Clear and Hidden Sides of Immunity Against Intestinal Helminths. Trends in Parasitology, 2017, 33, 678-693.	3.3	76

Alba Cortés

#	Article	lF	CITATIONS
19	Antibody trapping: A novel mechanism of parasite immune evasion by the trematode Echinostoma caproni. PLoS Neglected Tropical Diseases, 2017, 11, e0005773.	3.0	20
20	Resistance against Echinostoma caproni (Trematoda) secondary infections in mice is not dependent on the ileal protein production. Journal of Proteomics, 2016, 140, 37-47.	2.4	7
21	Interleukin-25 Induces Resistance Against Intestinal Trematodes. Scientific Reports, 2016, 6, 34142.	3.3	15
22	Definitive host influences the proteomic profile of excretory/secretory products of the trematode Echinostoma caproni. Parasites and Vectors, 2016, 9, 185.	2.5	10
23	Differential alterations in the small intestine epithelial cell turnover during acute and chronic infection with Echinostoma caproni (Trematoda). Parasites and Vectors, 2015, 8, 334.	2.5	19
24	Altered Protein Expression in the Ileum of Mice Associated with the Development of Chronic Infections with Echinostoma caproni (Trematoda). PLoS Neglected Tropical Diseases, 2015, 9, e0004082.	3.0	22
25	Intestinal IFN- \hat{l}^3 production is associated with protection from clinical signs, but not with elimination of worms, in Echinostoma caproni infected-mice. Parasitology Research, 2014, 113, 2037-2045.	1.6	9
26	Differential expression and glycosylation of proteins in the rat ileal epithelium in response to Echinostoma caproni infection. Journal of Proteomics, 2014, 101, 169-178.	2.4	11
27	The effect of glycosylation of antigens on the antibody responses against <i>Echinostoma caproni</i> (Trematoda: Echinostomatidae). Parasitology, 2014, 141, 1333-1340.	1.5	11
28	Protective immunity against Echinostoma caproni in rats is induced by Syphacia muris infection. International Journal for Parasitology, 2013, 43, 453-463.	3.1	12
29	Proteomic analysis of the pinworm Syphacia muris (Nematoda: Oxyuridae), a parasite of laboratory rats. Parasitology International, 2012, 61, 561-564.	1.3	9
30	Extracellular Vesicles from Parasitic Helminths Contain Specific Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells. PLoS ONE, 2012, 7, e45974.	2.5	300